对一个十进制数的各位数字做一次平方和,称作一次迭代。如果一个十进制数能通过若干次迭代得到 1,就称该数为幸福数。1 是一个幸福数。此外,例如 19 经过 1 次迭代得到 82,2 次迭代后得到 68,3 次迭代后得到 100,最后得到 1。则 19 就是幸福数。显然,在一个幸福数迭代到 1 的过程中经过的数字都是幸福数,它们的幸福是依附于初始数字的。例如 82、68、100 的幸福是依附于 19 的。而一个特立独行的幸福数,是在一个有限的区间内不依附于任何其它数字的;其独立性就是依附于它的的幸福数的个数。如果这个数还是个素数,则其独立性加倍。例如 19 在区间[1, 100] 内就是一个特立独行的幸福数,其独立性为 2×4=8。
另一方面,如果一个大于1的数字经过数次迭代后进入了死循环,那这个数就不幸福。例如 29 迭代得到 85、89、145、42、20、4、16、37、58、89、…… 可见 89 到 58 形成了死循环,所以 29 就不幸福。
本题就要求你编写程序,列出给定区间内的所有特立独行的幸福数和它的独立性。
输入格式:
输入在第一行给出闭区间的两个端点:1<A<B≤104。
输出格式:
按递增顺序列出给定闭区间 [A,B] 内的所有特立独行的幸福数和它的独立性。每对数字占一行,数字间以 1 个空格分隔。
如果区间内没有幸福数,则在一行中输出
SAD
。输入样例 1:
10 40
输出样例 1:
19 8 23 6 28 3 31 4 32 3
注意:样例中,10、13 也都是幸福数,但它们分别依附于其他数字(如 23、31 等等),所以不输出。其它数字虽然其实也依附于其它幸福数,但因为那些数字不在给定区间 [10, 40] 内,所以它们在给定区间内是特立独行的幸福数。
输入样例 2:
110 120
输出样例 2:
SAD
思路:可以用一个数组来标记依附的幸福数,用来判断区间内的数是否特立独行;在用一个数组计其独立性.
#include<iostream>
#include<cmath>
using namespace std;
bool f(int k){
if(k<2)return 0;
for(int i=2;i<=sqrt(k);i++)
if(k%i==0)return 0;
return 1;
}
int main(){
int n,m,a[10001]={0},b[10001]={0},g=0;
cin>>m>>n;
for(int i=m;i<=n;i++){
int c[10001]={0},k=i;
do{
int sum=0;
while(k){
sum+=(k%10)*(k%10);
k/=10;
}
k=sum;
if(c[sum]==0)c[sum]=1;
else k=1;
if(sum==1){
for(int h=1;h<10001;h++){
if(c[h]){
a[h]=1;
b[i]++;
}
}
}
}while(k!=1);
}
for(int i=m;i<=n;i++){
if(a[i]==0&&b[i]){
printf("%d %d\n",i,b[i]*(f(i)?2:1));
g++;
}
}
if(g==0)cout<<"SAD";
return 0;
}