循环枚举——以百鸡问题为例

循环枚举问题,循环的重数不一定非得是变量的个数,比如题目要讨论三个变量,但是确定了两个变量之后第三个变量也随之确定,则只需要二重循环即可

以百鸡问题为例:

题目描述:
用小于等于n元去买100只鸡,大鸡5元/只,小鸡3元/只,还有1/3元每只的一种小鸡,分别记为x只,y只,z只。编程求解x,y,z所有可能解。

输入:
测试数据有多组,输入n。

输出:
对于每组输入,请输出x,y,z所有可行解,按照x,y,z依次增大的顺序输出。

样例输入:
40

样例输出:
x=0,y=0,z=100 x=0,y=1,z=99 x=0,y=2,z=98 x=1,y=0,z=99

传统思想是三重循环

但是本题有限制条件“x+y+z=100”,这意味着确定x与y之后,z必然等于100-x-y

因此二重循环即可

C代码如下:

#include <stdio.h>
int main() {
    int n;
    while (scanf("%d", &n) != EOF) {
        for(int x=0;x<=100;x++){
            for(int y=0;y<=100-x;y++){
                int z=100-x-y;
                if(x*15+y*9+z*1<=n*3)
                    printf("x=%d,y=%d,z=%d\n",x,y,z);
            }
        }

    }
    return 0;
}

百鸡问题是一个著名的数学问题,示例解法中通常使用两个循环来求解。这个问题是这样描述的:有一百块钱需要买一百只鸡,其中公鸡5块钱一只,母鸡3块钱一只,小鸡1块钱三只。问该怎样买鸡才能刚好花光一百块钱? 常见的解法中,第一个循环用于遍历公鸡的数量,假设公鸡数量为x,那么第二个循环则用于遍历母鸡的数量,假设母鸡数量为y,小鸡数量则可以通过总数量减去公鸡和母鸡的数量得到。然后,根据题目要求的价格关系和数量关系来判断是否满足条件。这种解法是比较直观的,但由于两个循环嵌套,会带来一定的时间复杂度。 为了优化这个循环,可以考虑直接从题目给出的价格关系出发,使用一个循环来遍历公鸡的数量。假设公鸡数量为x,则可以得到母鸡的价格是(100 - 5 * x) / 3,小鸡的价格则是(100 - 5 * x) * 3。这样,只需要判断母鸡和小鸡的价格是否为整数,并且数量之和是否为100即可。这样就只需要一个循环,可以减少时间复杂度。 具体优化循环的实现代码如下所示: ```c #include <stdio.h> int main() { int x, y, z; for(x = 0; x <= 100/5; x++) { y = (100 - 5 * x) / 3; z = 100 - x - y; if((100 - 5 * x) % 3 == 0 && z % 3 == 0) { printf("公鸡:%d只,母鸡:%d只,小鸡:%d只\n", x, y, z); } } return 0; } ``` 这样,通过优化循环,我们可以更加高效地求解百鸡问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值