例1:点菜问题
题目描述:
北大网络实验室经常有活动需要叫外卖,但是每次叫外卖的报销经费的总额最大为C元,有N种菜可以点,经过长时间的点菜,网络实验室对于每种菜i都有一个量化的评价分数(表示这个菜可口程度),为Vi,每种菜的价格为Pi, 问如何选择各种菜,使得在报销额度范围内能使点到的菜的总评价分数最大。 注意:由于需要营养多样化,每种菜只能点一次。
输入:
输入的第一行有两个整数C(1 <= C <= 1000)和N(1 <= N <= 100),C代表总共能够报销的额度,N>代表能点菜的数目。接下来的N行每行包括两个在1到100之间(包括1和100)的的整数,分别表示菜的>价格和菜的评价分数。
输出:
输出只包括一行,这一行只包含一个整数,表示在报销额度范围内,所点的菜得到的最大评价分数。
样例输入:
90 4
20 25
30 20
40 50
10 18
40 2
25 30
10 8
样例输出:
95
38
算法思想:
设dp[i][j]表示前i个物品装进容量为j的背包能获得的最大价值,则状态转移方程如下:
若第i个物品装不下或者能装下但是不装入,dp[i][j]=dp[i-1][j];
若第i个物品装入背包,dp[i][j]=dp[i-1][j-w[i]]+v[i];
则dp[i][j]=max{dp[i-1][j],dp[i-1][j-w[i]]+v[i]};
观察上述方程可知,第i行第j列dp的值只与第i-1行第j-w[i]列dp的值有关,即dp的值只与其相邻左上角的dp值有关,且最终只需要得出dp[n][m]即可,故可以省去一维,每次更新一行元素即可,代表第i行元素更新第i-1行。
算法实现:
#include <stdio.h>
#include <string.h>
#define MAXN 101
#define MAXM 1001
int dp[MAXM];
int w[MAXN], v[MAXN];
int main() {
int m, n;
while (scanf("%d %d", &m, &n) != EOF) {
for (int i = 0; i < n; i++)
scanf("%d %d", &w[i], &v[i]);
memset(dp, 0, sizeof(dp));
for (int i = 0; i < n; i++) {
for (int j = m; j >= w[i]; j--) {
if (dp[j - w[i]] + v[i] > dp[j])
dp[j] = dp[j - w[i]] + v[i];
}
}
printf("%d\n", dp[m]);
}
return 0;
}
若算法还不是很理解,可按照下图例子模拟:
i\j | 1 | 2 | 3 | 4 | 5 |
1 | 0 | 12 | 12 | 12 | 12 |
2 | 10 | 12 | 22 | 22 | 22 |
3 | 10 | 12 | 22 | 30 | 32 |
4 | 10 | 15 | 25 | 30 | 37 |
第4行为最终版本的dp数组中的值,i在程序中起到了迭代的作用,并无实际意义(类似Dijkstra算法)
例2:最小邮票数
题目描述:
有若干张邮票,要求从中选取最少的邮票张数凑成一个给定的总值。 如,有1分,3分,3分,3分,4分五张邮票,要求凑成10分,则使用3张邮票:3分、3分、4分即可。
输入:
有多组数据,对于每组数据,首先是要求凑成的邮票总值M,M<100。然后是一个数N,N〈20,表示有N张邮票。接下来是N个正整数,分别表示这N张邮票的面值,且以升序排列。
输出:
对于每组数据,能够凑成总值M的最少邮票张数。若无解,输出0。
样例输入:
10
5
1 3 3 3 4
样例输出:
3
算法思想:
该题可以描述成背包问题:背包重量w[i]=stamp[i],价值为1,求M容量装满情况下背包的最小价值
这里价值即为本题邮票的个数
设dp[i][j]表示选取第i个邮票凑成邮票总值为j时所需最少邮票张数,则状态转移方程如下:
若不放第i个物品也可以填满容量为j的背包,则dp[i][j]=dp[i-1][j];
若放第i的物品,则dp[i][j]=dp[i-1][j-w[i]]+1;
去掉一维,得最终状态转移方程为:dp[j]=min{dp[j],dp[j-stamp[i]]+1};
代码如下:
#include <stdio.h>
#include <string.h>
#define MAXM 100
#define MAXN 20
int dp[MAXM];
int stamp[MAXN];
int main() {
int m,n;
while (scanf("%d\n%d",&m,&n)!=EOF) {
for(int i=0;i<n;i++)
scanf("%d",&stamp[i]);
for(int i=0;i<=m;i++)
dp[i]=MAXN;
dp[0]=0;
for(int i=0;i<n;i++){
for(int j=m;j>=stamp[i];j--){
if(dp[j]>dp[j-stamp[i]]+1)
dp[j]=dp[j-stamp[i]]+1;
}
}
if(dp[m]==MAXN) printf("0\n");
else printf("%d\n",dp[m]);
}
return 0;
}
注意这里dp的初始值!!!