- 博客(8)
- 问答 (2)
- 收藏
- 关注
原创 Informed Operators
近似适应度也可以用于初始化、交叉(或重组)和突变,通过一种被称为知情操作符的技术。如下为应用于变异的一种形式:参考文献:[1]CMA evolution strategy assisted by kriging model and approximate ranking[J]. Applied Intelligence, 2018:1-17.[2]A Mono Surrogate for Multiobjective Optimization. 2010....
2021-08-26 20:11:10 168
原创 Kring(DACE)Multiple design sites are not allowed
报错:错误使用 dacefit (line 84)Multiple design sites are not allowed查看代码后,发现原来训练集中不能存在重复的训练样本(这里针对决策向量)解决办法:1.采用unique来把重复的训练样本剔除掉;2.使用dace工具箱里的dsmerge函数; 1) [ newX,newY ] = dsmerge(X,Y);%这里默认 2) [ newX,newY ] = dsmerge(X,Y,e);%e方法...
2021-06-24 11:29:16 3736 10
原创 对于RankSVM的一点理解(没解释明白,求大佬点拨)
RankSVM的原始形式:对比SVM的原始形式:假设yi=1,则RankSVM与SVM的不同之处就在约束条件中的核函数部分,前者意思为hi-hj,后者为hi。我们假设h为训练模型所得的决策函数。我一直在思考的问题是RankSVM所要最大化的距离是哪一段距离,是任一样本对之间的距离(总共有(l*(l-1)/2)对)?在论文Ordinal Regression in Evolutionary Computation中,RankSVM最大化等级间隔,最大化相邻等级对的距离。而An effici
2021-06-03 22:54:30 995 3
原创 mapminmax函数
%% 数据归一化 注意转置[Train_features,PS] = mapminmax(train_matrix');trainF = Train_features'; Test_features = mapminmax('apply',test_matrix',PS); testF = Test_features';%‘apply’ 配合 ps,是说将之前执行 mapminmax 调用得到的参数设置%ps 应用当前这句调用里。与上一句采用同样的映射,可使用。Test_featu...
2021-01-06 14:48:01 4125
原创 Widrow-Hoff(Adaline)算法的对偶形式
(是老师布置的作业,由于没有找到答案,所以自己凭想象写了一个,不知道正确与否。如果有知道的大佬,跪求纠正与讲解。)1.Rosenblatt感知机1)该学习算法的原始形式2)对偶形式3)该学习算法的对偶形式2.Widrow-Hoff(Adaline)算法1)已知该学习算法的原始形式2)对偶形式3)根据对偶形式得到的Widrow-Hoff(Adaline)算法的对偶形式如下(自己根据Rosenblatt感知机的推导方法凭想象推的)...
2020-06-02 21:21:25 517
原创 python 三维数组变量怎么看
创建了一个(200,200,2)的三维数组1.(1)Axis=0 Index=0:(i,j=0,h) j为常量0,i可从0到199之间取值,h可从0到1之间取值,也就把三维变成了二维(200,2) (2)Axis=0 Index=1:(i,j=1,h) j为常量1,i可从0到199之间取值,h可从0到1之间取值,也就把三维变成了二维(200,2)....由于j也可从0到199之间取值,即Index也可从0到199之间取值,所以总共有200个这样的二维数组。Index可以从...
2020-05-30 15:58:07 1455
原创 No Free Lunch Theorem(NFL)(摘抄)
如果考虑所有潜在的问题,无论学习算法A多聪明,学习算法B多笨拙,他们的训练集外误差相同。所以脱离具体问题,空泛地谈论“什么学习算法更好”毫无意义。要谈论算法地相对优劣,必须要针对具体的学习问题;在某些问题上表现好的学习算法,在另一些问题上却可能不尽如人意,学习算法自身的归纳偏好与问题是否相配,往往会起到决定性的作用。...
2020-05-27 21:12:18 227
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人