Problem Description
Ignatius再次被魔王抓走了(搞不懂他咋这么讨魔王喜欢)……这次魔王汲取了上次的教训,把Ignatius关在一个n*m的地牢里,并在地牢的某些地方安装了带锁的门,钥匙藏在地牢另外的某些地方。刚开始Ignatius被关在(sx,sy)的位置,离开地牢的门在(ex,ey)的位置。Ignatius每分钟只能从一个坐标走到相邻四个坐标中的其中一个。魔王每t分钟回地牢视察一次,若发现Ignatius不在原位置便把他拎回去。经过若干次的尝试,Ignatius已画出整个地牢的地图。现在请你帮他计算能否再次成功逃亡。只要在魔王下次视察之前走到出口就算离开地牢,如果魔王回来的时候刚好走到出口或还未到出口都算逃亡失败。
Input
每组测试数据的第一行有三个整数n,m,t(2<=n,m<=20,t>0)。接下来的n行m列为地牢的地图,其中包括:
. 代表路
- 代表墙 @ 代表Ignatius的起始位置 ^ 代表地牢的出口 A-J 代表带锁的门,对应的钥匙分别为a-j a-j 代表钥匙,对应的门分别为A-J
每组测试数据之间有一个空行。
Output
针对每组测试数据,如果可以成功逃亡,请输出需要多少分钟才能离开,如果不能则输出-1。
Sample Input
4 5 17
@A.B.
a*..
…^
c…b4 5 16
@A.B.
a*..
…^
c…b
Sample Output
16
-1
【解题注意】
- 正确理解题意(仅有一次的机会,不是说被发现了被放回原位后还可以继续走…因为这个wa了好久…)
- 剪枝问题:清楚用于剪枝的数组到底需要开几维,即到底需要携带哪些不同的信息才能正确又唯一地表示某一状态
【解题收获】
1.状态压缩(位运算的应用)用同一个数来直接涵盖所有钥匙的信息并且能高效地判断门的开闭问题
唔哇二进制真的是很有趣的操作耶(突然快乐
2.对剪枝数组的了解加深
AC代码
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#define len (int)strlen(word)
#define max(a,b) (a)>(b)>(a):(b)
#define min(a,b) (a)<(b)>(a):(b)
using namespace std;
int n,m,t;
int sx,sy,ex,ey;
char graph[25][25];
bool key[1<<11][25][25];
int direct[4][2]={{1,0},{-1,0},{0,1},{0,-1}};
struct node{
int x,y;
int time;
int state;
bool check(){
if(x>=1&&x<=n&&y>=1&&y<=m)
return true;
return false;
}
};
int bfs_door(){
struct node first;
first.x=sx;first.y=sy;first.state=0;
memset(key,false,sizeof(key));
key[first.state][first.x][first.y]=true;
first.time=0;
queue<struct node>que;
que.push(first);
while(!que.empty()){
struct node cur=que.front();
que.pop();
if(cur.time>=t) return -1;
if(cur.x==ex&&cur.y==ey)
return cur.time;
for(int i=0;i<4;i++){
struct node next=cur;
next.x=cur.x+direct[i][0];next.y=cur.y+direct[i][1];next.time=cur.time+1;
if(next.check()&&graph[next.x][next.y]!='*'){
if(graph[next.x][next.y]>='a'&&graph[next.x][next.y]<='j'&&!key[next.state][next.x][next.y]){
next.state=cur.state|(1<<(graph[next.x][next.y]-'a'+1));
que.push(next);
key[next.state][next.x][next.y]=true;
}
else if(graph[next.x][next.y]>='A'&&graph[next.x][next.y]<='J'&&next.state&(1<<(graph[next.x][next.y]-'A'+1))&&!key[next.state][next.x][next.y]){
que.push(next);
key[next.state][next.x][next.y]=true;
}
else if((graph[next.x][next.y]=='.'||graph[next.x][next.y]=='@'||graph[next.x][next.y]=='^')&&!key[next.state][next.x][next.y]){
que.push(next);
key[next.state][next.x][next.y]=true;
}
}
}
}
return -1;
}
int main()
{
while(scanf("%d%d%d",&n,&m,&t)!=EOF){
getchar();
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%c",&graph[i][j]);
if(graph[i][j]=='@'){sx=i;sy=j;}
if(graph[i][j]=='^'){ex=i;ey=j;}
}
getchar();
}
printf("%d\n",bfs_door());
}
}