树的特点
线性结构:一对一
树结构:一对多
一个结点可以有多个子结点,每个结点有唯一的父结点(根结点例外)。
树的定义(递归)
树是由n (n >=0)个结点组成的有限集合。
如果n = 0,称为空树; 如果n > 0,则:
有唯一的一个结点称之为根(root)的结点,它只可以有后继,但没有前驱;
除根结点以外的其它结点划分为m (m >= 0)个互不相交的有限集合T0, T1, …, Tm-1,每个集合本身又是一棵树,并且称之为根的子树(subTree)。
每棵子树的根结点有且仅有一个直接前驱,但可以有0个或多个后继。
树的基本概念
基本概念:
结点:
父结点、子结点、兄弟结点、祖先结点、子孙结点、叶结点。
度:
结点的度:结点的子结点个数;
树的度:树中所有结点的度的最大值。
结点层次:约定根结点在第一层,其他结点的层数=父结点的层数 + 1。
树的高度:树中所有结点的最大层数。
有序树和无序树:若结点的子树有次序排列,且先后次序不能互换,这样的树称为有序树,反之为无序树。
树的C++实现与遍历
树是一种非线性的数据结构,由节点和边组成。在树中,每个节点都可以有零个或多个子节点,子节点之间没有任何顺序关系。
树的定义
在C++中,我们可以使用结构体或类来定义树的节点。每个节点包含一个值和指向子节点的指针。
struct TreeNode {
int val