二叉树的前序、中序和后序遍历问题

已知前序、中序建立二叉树

class Soluetion {

    int pos;

public:
    TreeNode *tree(int left, int right, vector<int> &preorder, vector<int> &inorder) {
        if (left > right)return nullptr;
        int t = preorder[pos++];
        int location;
        for (int i = 0; i < inorder.size(); i++) {
            if (inorder[i] == t) {
                location = i;
                break;
            }
        }
        TreeNode *root = new TreeNode(t);

        root->left = tree(left, location - 1, preorder, inorder);
        root->right = tree(location + 1, right, preorder, inorder);
        return root;
    };

    TreeNode *buildTree(vector<int> &preorder, vector<int> &inorder) {
        int size = inorder.size();
        if (size == 0)return nullptr;
        pos = inorder.size() - 1;
        return tree(0, inorder.size() - 1, preorder,inorder);

    }
};

已知中序、后序建立二叉树

这一段代码与上一段有明显的区别,最大的区别在于上一段代码先递归左树后递归右树,后一段代码先递归右树后递归左树。而这正是前序遍历和后序遍历的特点所决定的

class Solution {
public:
    int pos;

    TreeNode *tree(int left, int right, vector<int> &inorder, vector<int> &postorder) {

        if(left>right||pos==-1)return nullptr;
        int t=postorder[pos--];
        int location;
        for (int i = 0; i < inorder.size(); i++) {
            if (inorder[i] == t) {
                location = i;
                break;
            }

        }
        TreeNode *root = new TreeNode(t);
        root->right = tree(location + 1, right, inorder, postorder);
        root->left = tree(left, location - 1,inorder, postorder);

        return root;
    }

public:
    TreeNode *buildTree(vector<int> &inorder, vector<int> &postorder) {
        int size = inorder.size();
        if (size == 0)return nullptr;
        pos = inorder.size() - 1;
        return tree(0, inorder.size() - 1, inorder, postorder);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值