朴生贵灵

一个人不想攀高就不怕下跌,一不用倾轧排挤,可以保其天真成其自然,潜心一志完成自己能做的事情...

动态规划之免费馅饼

免费馅饼
Time Limit: 1000 ms Memory Limit: 32768 KiB
Submit Statistic Discuss
Problem Description
都说天上不会掉馅饼,但有一天gameboy正走在回家的小径上,忽然天上掉下大把大把的馅饼。说来gameboy的人品实在是太好了,这馅饼别处都不掉,就掉落在他身旁的10米范围内。馅饼如果掉在了地上当然就不能吃了,所以gameboy马上卸下身上的背包去接。但由于小径两侧都不能站人,所以他只能在小径上接。由于gameboy平时老呆在房间里玩游戏,虽然在游戏中是个身手敏捷的高手,但在现实中运动神经特别迟钝,每秒种只有在移动不超过一米的范围内接住坠落的馅饼。现在给这条小径如图标上坐标:

为了使问题简化,假设在接下来的一段时间里,馅饼都掉落在0-10这11个位置。开始时gameboy站在5这个位置,因此在第一秒,他只能接到4,5,6这三个位置中期中一个位置上的馅饼。问gameboy最多可能接到多少个馅饼?(假设他的背包可以容纳无穷多个馅饼)
Input
输入数据有多组。每组数据的第一行为以正整数n(0 < n < 100000),表示有n个馅饼掉在这条小径上。在结下来的n行中,每行有两个整数x,T(0 <= T < 100000),表示在第T秒有一个馅饼掉在x点上。同一秒钟在同一点上可能掉下多个馅饼。n=0时输入结束。

Output
每一组输入数据对应一行输出。输出一个整数m,表示gameboy最多可能接到m个馅饼。

提示:本题的输入数据量比较大,建议用scanf读入,用cin可能会超时。
Sample Input
6
5 1
4 1
6 1
7 2
7 2
8 3
0
Sample Output
4
Hint
hdoj1176 有链接提示的题目请先去链接处提交程序,AC后提交到SDUTOJ中,以便查询存档。
Source
lwg

#include <stdio.h>
#include <stdlib.h>
#include<string.h>
int dp[14][100001];
int max(int m,int n)
{
    return m>n?m:n;
}
int main()
{
    int n,i,j,tt,w,t;
    while(scanf("%d",&n)!=EOF&&n)
    { tt=0;
      memset(dp,0,sizeof(dp));
        while(n--)
        {
            scanf("%d%d",&w,&t);
            dp[w+1][t]++;
            tt=max(tt,t);
        }
        for(i=tt-1;i>=0;i--)
        {
            for(j=1;j<=11;j++)
            {
                dp[j][i]=max(dp[j][i+1],max(dp[j+1][i+1],dp[j-1][i+1]))+dp[j][i];
            }
        }
        printf("%d\n",dp[6][0]);
    }
    return 0;
}

THINK:
编程算法:
这是数塔型结构的,利用的就是输进去的一个点(先存起来)下面(数塔图中)或者说是下一秒的邻近的三个点dp的最大值,然后再加上本身的(输入的落下的饼的个数)
注:下面的思路是网上查阅资料
分析:
考虑到要用动态规划的思想来解题,可不知道怎么用,依旧是从顶开始想往下计算当前位置下三个点最多馅饼的点,但是这有一个问题,就是可能下一个点不是最大的,但下下个点就是最大的,而此时就达不到那个最大的点了。当然想过考虑下两点的和最大,但是下第三个点呢?这样考虑下去就无休止了,上网看了看,动态规划的方法自底向上对每一个位置,每一秒时间求当前的最大馅饼数。
可以得出这样的数塔结构:

第0秒 5 (这里的数字指的是第N秒可能到达的位置坐标)
第1秒 4 5 6
第2秒 3 4 5 6 7
第3秒 2 3 4 5 6 7 8
第4秒 1 2 3 4 5 6 7 8 9
第5秒 0 1 2 3 4 5 6 7 8 9 10
第6秒 0 1 2 3 4 5 6 7 8 9 10
这样就可以看出怎么动态规划了,第i秒第j的位置始终存放这从此位置可得到的最大馅饼数,那么在0秒的5位置处就是最大可得到的馅饼数

好的,下面的是自己写的了
NOTE:注意当在第0个点的位置的时候,再往左走就走不通了,这时候只有2个点比较大小,第三个为0,可以看做没有,所以dp不能从0开始,只能从1到11这样算,当是1的时候刚刚符合再往左走就是0的情况了;

阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/BHliuhan/article/details/79953382
文章标签:
上一篇动态规划之上升子序列
下一篇动态规划之小鑫去爬山
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭