KMP

数据结构实验之串一:KMP简单应用
Time Limit: 1000 ms Memory Limit: 65536 KiB

Problem Description
给定两个字符串string1和string2,判断string2是否为string1的子串。
Input
输入包含多组数据,每组测试数据包含两行,第一行代表string1(长度小于1000000),第二行代表string2(长度小于1000000),string1和string2中保证不出现空格。
Output
对于每组输入数据,若string2是string1的子串,则输出string2在string1中的位置,若不是,输出-1。
Sample Input
abc
a
123456
45
abc
ddd
Sample Output
1
4
-1
Hint

Source
cjx

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
char s1[1000001],s2[1000001];
int nex[1000001];
void next(char s2[],int len2)
{
    nex[0]=-1;
    int k=-1;
    for(int i=1;i<len2;i++)//第二个数组和第二个数组进行比较;从第一个开始比较
    {
        while(k>-1&&s2[k+1]!=s2[i])//在前面都相等的前提下比较s2[k+1]和s2[i]的关系
            //如果不相等就比较前一个最大前后缀后面的那个数和当前的值是不是相等的,相等的看下面的
            //if语句,进行加一,不相等的话继续比较前一个最大的前后缀,直到比较到了-1,如果s2[k+1]和s2[i]
            //还不相等,当前的s2[i]对应的next就是-1了;
        {
            k=nex[k];
        }
        if(s2[k+1]==s2[i])k=k+1;
        nex[i]=k;
    }
}
int kmp(char s1[],char s2[],int len1,int len2)
{
    next(s2,len2);
    int k=-1;
    for(int i=0;i<len1;i++)
    {
        while(k>-1&&s2[k+1]!=s1[i])
        {
            k=nex[k];//当前的如果不相等,就k=next[k],把k对应的位置拉过来进行匹配;
        }
        if(s2[k+1]==s1[i])k++;//如果相等的话i和k就继续往后走,这个时候k是等于-1的
        //如果一直不相等i就往后走,直到s2[k+1]==s1[i]就继续比较;
        if(k==len2-1)return i-k+1;//如果k走到了最后就说明完全匹配好了,就返回值
    }
    return -1;
}
int main()
{
    while(~scanf("%s%s",s1,s2))
    {
        int len1=strlen(s1);
        int len2=strlen(s2);
        int t=kmp(s1,s2,len1,len2);
        if(t!=-1)printf("%d\n",t);
        else printf("-1\n");
    }
    return 0;
}
我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?” 解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。 之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。 个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值