题目描述
为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯。一共有 nn 张地毯,编号从 11 到nn。现在将这些地毯按照编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共n+2n+2行
第一行,一个整数nn,表示总共有nn张地毯
接下来的nn行中,第 i+1i+1行表示编号ii的地毯的信息,包含四个正整数a ,b ,g ,ka,b,g,k ,每两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)(a,b)以及地毯在xx轴和yy轴方向的长度
第n+2n+2行包含两个正整数xx和yy,表示所求的地面的点的坐标(x,y)(x,y)
输出格式
输出共11行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1−1
输入输出样例
输入
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
输出
3
输入
3
1 0 2 3
0 2 3 3
2 1 3 3
4 5
输出
-1
说明/提示
对于30% 的数据,有 n ≤ 2;
对于50% 的数据,0 ≤a, b, g, k≤100;
对于100%的数据,有 0 ≤n ≤10,000 ,0≤a, b, g, k ≤100,000。
这里询问只有一个点,所以我们可以把矩阵离线下来,直接按矩阵读入顺序模拟判断矩阵是否覆盖,然后输出就行了。
这里要注意给出的a,b,g,k是左下角的点和其在x,y上的长度。我以为是左上和右下的坐标,(居然有90),害我调了老半天
#include<bits/stdc++.h>
#define ll long long
#define N 1001
#define MAXN 1000001
#define gtc() getchar()
#define INF 0x3f3f3f3f
using namespace std;
template <class T>
inline void read(T &s){
T w = 1, ch = gtc(); s = 0;
while(!isdigit(ch)){if(ch == '-') w = -1; ch = gtc();}
while(isdigit(ch)){s = s * 10 + ch - '0'; ch = gtc();}
s = s * w;
}
struct node{
int x, y, xx, yy;
}v[MAXN];
int n;
int tx, ty, ans = -1;
int main()
{
read(n);
for(int i = 1; i <= n; ++i){
int k, l;
read(v[i].x), read(v[i].y), read(k), read(l);
v[i].xx = v[i].x + k - 1, v[i].yy = v[i].y + l;//xx,yy为右上坐标
}
read(tx), read(ty);
for(int i = 1; i <= n; ++i){
if(v[i].x <= tx && v[i].y <= ty && v[i].xx >= tx && v[i].yy >= ty) ans = i;
}
printf("%d\n", ans);
return 0;
}
}