题目描述
某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。
为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。
现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。
请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。
输入格式
文件第一行是两个数字n(1<=n<=50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);
接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。数据保证路灯位置单调递增。
输出格式
一个数据,即最少的功耗(单位:J,1J=1W·s)。
输入输出样例
输入
5 3
2 10
3 20
5 20
6 30
8 10
输出
270
说明/提示
输出解释:
{此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}
数据小,我们可以设区间i,j和此时老张是在i还是j
那么们就有f[i][j][1] 和 f[i][j][0]分别代表老张在i和老张在j的最小功耗,于是我们可以有显然的转移
比较长,就是转到相邻区间时加上没有关掉的灯的功耗,功耗用前缀和维护一下,
转移太长,在代码里看吧
C
o
d
e
Code
Code
#include<bits/stdc++.h>
#define N 51
#define gtc() getchar()
#define INF 0x3f3f3f3f
#define rg register
using namespace std;
template <class T>
inline void read(T &s){
T w = 1, ch = gtc(); s = 0;
while(!isdigit(ch)){if(ch == '-') w = -1; ch = gtc();}
while(isdigit(ch)){s = s * 10 + ch - '0'; ch = gtc();}
s = s * w;
}
int n, c;
int f[N][N][1];
int p[N], sum[N], a[N];
inline int s(int x, int y){
return sum[y] - sum[x];
}
int main()
{
memset(f, INF, sizeof(f));
read(n), read(c);
sum[0] = 0;
for(rg int i = 1; i <= n; ++i){
read(a[i]); read(p[i]);
sum[i] = sum[i-1] + p[i];
}
f[c][c][1] = f[c][c][0] = 0;
for(rg int l = 2; l <= n; ++l)
for(rg int i = 1; i + l - 1 <= n; ++i){
int j = i + l - 1;
f[i][j][1] = min(f[i][j-1][1] + (a[j] - a[j-1]) * (s(j-1, n) + sum[i-1]), f[i][j-1][0] + (a[j] - a[i]) * (s(j-1, n) + sum[i-1]));
f[i][j][0] = min(f[i+1][j][1] + (a[j] - a[i]) * (sum[i] + s(j, n)), f[i+1][j][0] + (a[i+1] - a[i]) * (s(j, n) + sum[i]));
}
printf("%d\n", min(f[1][n][1], f[1][n][0]));
return 0;
}