BITDDD小栈

厚积薄发

python 数字图像处理 二 图像的加减乘除与交并补

图像的线性操作 假设f(x,y),g(x,y)分别为两幅已知的图像,图像的线性操作就是直接在每个位置的像素上做运算(两幅图像的尺寸需保持一致),最终得到的图像s(x,y),可能会出现以下问题: 1)会出现不在 [ 0-255 ] 之间的像素点存在,最简单的操作就是小于0的像素点置为0,大于25...

2019-03-02 09:51:56

阅读数 169

评论数 0

python 数字图像处理1 基本知识

1.定义 一幅图像定义为一个二维数组f(x,y),其中x,y是空间的平面坐标,而在任何一堆空间坐标x,y处的幅值f成为图像在该点的强度或灰度,每个元素都有一个特定的位置和幅值,这些元素称为像素。 2.图像处理分类 低级处理:输入,输出都是图像,例如降噪,对比度增强,图像锐化 中级处理:...

2019-03-01 09:56:52

阅读数 58

评论数 0

Python 提取Windos聚焦的登陆图片

  引言        用Win10也有一段时间了,发现设置了Windows聚焦的锁屏十分好看,虽然网上有教程,可以找到对应的本地地址,但每次还需要重命名,然乎复制粘贴到自己指定的文件夹,为了省事,闲暇之余用python写了一个脚本,可以自动将windows聚焦的图片拷到自己指定的目录上,脚本...

2019-02-23 22:28:12

阅读数 67

评论数 0

编程笔记-rand7()生成rand10()

概述 已知随机数生成函数rand7()可以生成整数1-7之间的均匀分布,如何使用rand7()构造rand10(),使rand10()可以生成整数1-10的均匀分布   分析 要保证rand10()生成的随机数是1-10的均匀分布,可以先产生1-10*n的均匀分布,假设x是1-10*n区间...

2018-12-10 11:37:02

阅读数 109

评论数 0

数据结构笔记-二叉树及其实现 python

概述 二叉树是一种最简单的树形结构,其特点是树中每个结点至多关联到两个后继结点,也就是,一个节点可以关联到的结点可以为0,1,2,这也是二叉树一个节点度的定义,另一个特点是结点关联的后继结点明确的分左右,一般有一个根结点,然后根结点的左右后继结点分别称为根结点的左,右孩子,或者左,右关联结点。 ...

2018-11-26 13:47:46

阅读数 49

评论数 0

数据结构笔记-实现链表反转 python

概述 这里主要针对单向链接表,单向连接表的结点是一个二元组,其中元素域elem保存着作为表元素的数据项,连接域next包含着同一个表里下一个节点的标识。在最常见的单链表里,与表里n个元素对应的n个结点通过连接形成一条结点链,从表中任一结点可以找到保存着该标的下一个元素的结点,这样从头结点p出发,...

2018-11-25 12:11:47

阅读数 61

评论数 0

数据结构笔记-栈与队列 python

概述 栈与队列是程序设计中被广泛应用的两种重要的数据结构,都是在特定范围的存储单元内存储数据,这些数据都可以被重新取出使用,与线性表相比,他们的插入和删除受到更多的约束,固又称限定性的线性表结构。他们是最简单的缓存结构,他们只支持数据项的存储与访问,不支持数据项之间的任何关系。因此,这两种数据集...

2018-11-24 12:29:03

阅读数 70

评论数 0

线性模型-局部加权线性回归 机器学习实战

局部加权线性回归线性回归的一个问题是有可能出现欠拟合,因为它求的是具有最小均方误差的无偏估计,显然模型欠拟合将无法做出很好的回归预测,所以有些方法允许在估计中引入一些偏差,从而降低预测的均方误差。局部线性加权的思想是对待预测点附近的每个点赋予一个权重,然后在带权的样本上基于最小均方误差来进行回归....

2018-05-23 17:30:41

阅读数 400

评论数 0

线性模型-线性回归与实现 西瓜书

线性模型给定d个属性描述的实例x = (x1,x2,...,xd),其中xi是x在第i个属性上的取值,线性模型想要学得一个通过属性的线性组合来进行预测的函数,即:                                                                    ...

2018-05-23 11:27:30

阅读数 289

评论数 4

快速排序-提取排序索引 算法

引言上篇文章的运行结果会返回一个特征重要性列表,表示了一个预测分类问题中,各变量对分类的贡献程度,为了方便,我们需要将重要性排序,从而直观看的哪些是重要的特征,哪些是不重要的,其次,为了提高效率,有时我们需要的是特征对应的索引,而不是特征具体的值,例如我们需要首先知道是几号特征最重要,其次才需要知...

2018-05-19 14:19:46

阅读数 503

评论数 0

集成学习-随机森林原理与实现 西瓜书

多样性增强在讲随机森林之前,先讨论一下多样性增强.在集成学习中需要有效的生成多样性大的个体学习器,与构造单一学习器对比而言,一般是通过在学习过程中引入随机性,常见的做法是对数据样本,输入属性,输出表示,算法参数进行扰动.1)数据样本扰动给定初始数据集,可从中产生生不同的数据子集,再利用不同的数据子...

2018-05-18 14:33:47

阅读数 303

评论数 0

集成学习-Bagging原理与实现 西瓜书

Bagging简介Bagging是并行式集成学习的最著名代表,名字是由Bootstrap AGGregatING缩写而来,看到Bootstrap我们就会联想到boostrap的随机模拟法和它对应的样本获取方式,它是基于自助采样法(Boostrap sampleing),Bagging也是同理.给定...

2018-05-14 14:50:59

阅读数 890

评论数 0

集成学习-AdaBoost实现 机器学习实战

AdaBoost实现前两篇文章针对AdaBoost的伪代码实现步骤进行了讨论,也对关键步骤的更新方法进行了推导,脑海里已经基本有了整体框架,有了基本框架,代码的含义就清晰易懂了,下面看看AdaBoost是如何串行生成一系列基学习器的.导入数据from numpy import * import m...

2018-05-12 11:58:38

阅读数 189

评论数 0

集成学习-AdaBoost更新准则推导 西瓜书

1.损失函数上一篇文章简单介绍了集成学习和弱学习器的理论概率,最后给出了AdaBoost的伪代码与实现步骤,思路比较清晰,这篇文章主要针对分类器的重要性α与分布权重Dt的更新规则进行推导.推导之前先看一下常见的损失函数(损失函数在SVM(3)里介绍过,这里只给出损失函数形式):          ...

2018-05-11 14:32:58

阅读数 496

评论数 0

集成学习-弱分类器与AdaBoost简介 西瓜书

1.集成学习现实情景中,一个学习器的泛化性能可能有局限,而集成学习则可以通过构造多个学习器来完成学习任务,有时也被称为多分类器系统,集成学习的大致步骤是先生成一组‘个体学习器’,然后基于某种策略将学习器结合起来,个体学习器同昌由现有的算法从训练数据产生,最常用的是决策树,还有神经网络1,支持向量机...

2018-05-10 17:27:20

阅读数 1603

评论数 0

LASSO回归与L1正则化 西瓜书

1.结构风险与经验风险在支持向量机部分,我们接触到松弛变量,正则化因子以及最优化函数,在朴素贝叶斯分类,决策树我们也遇到类似的函数优化问题。其实这就是结构风险和经验风险两种模型选择策略,经验风险负责最小化误差,使得模型尽可能的拟合数据,而结构风险则负责规则化参数,使得参数的形式尽量简洁,从而达到防...

2018-04-23 19:29:57

阅读数 2129

评论数 12

SVM支持向量机-SKlearn实现与绘图(8)

了解了SVM的基本形式与算法实现,接下来用SKlearn实现支持向量机分类器.1.函数定义与参数含义先看一下SVM函数的完全形式和各参数含义:SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, pr...

2018-04-22 17:49:19

阅读数 1543

评论数 0

SVM支持向量机-核函数python实现(7)

数据可视化上篇文章介绍了线性不可分和线性可分两种情况,以及五种核函数,线性核函数(linear),多项式核函数(poly),高斯核函数(rbf),拉普拉斯核函数(laplace)和Sigmoid核函数,基于《机器学习实战》的数据,我们使用各种核函数对数据尝试分类,下面看一下效果如何.首先看一下我们...

2018-04-19 23:52:12

阅读数 2178

评论数 1

SVM支持向量机-核函数(6)

引言:前边几篇文章中提到的分类数据点,我们都假设是线性可分的,即存在超平面将样本正确分类,然而现实生活中,存在许多线性不可分的情况,例如“异或”问题就不是线性可分的,看一下西瓜书上的一个"异或"的例子,对于二维数据点,[0,0],[1,1]属于0类,[0,1],...

2018-04-18 12:18:46

阅读数 3576

评论数 3

SVM支持向量机-《机器学习实战》SMO算法Python实现(5)

经过前几篇文章的学习,SVM的优化目标,SMO算法的基本实现步骤,模型对应参数的选择,我们已经都有了一定的理解,结合《机器学习实战》,动手实践一个基本的SVM支持向量机,来完成一个简单的二分类任务。建立模型之前,首先看一下我们的数据,然后再用支持向量机实现分类:                  ...

2018-04-16 14:57:59

阅读数 454

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭