洛谷P1080 题解

文章介绍了在国王游戏中的贪心策略,通过比较两个大臣的分值乘积,决定最优的排列顺序。关键在于判断a0*a1/b2是否大于a0/b2以及a0*a2/b1是否大于a0/b1,以此来确定排序规则(cmp函数)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P1080 国王游戏

1.贪心思路

当两个大臣 q 1 q_1 q1 , q 2 q_2 q2 在国王( q 0 q_0 q0 )后又两种排列方式:

  1. q 0 q 1 q 2 q_0 q_1 q_2 q0q1q2
  2. q 0 q 2 q 1 q_0 q_2 q_1 q0q2q1

两种情况答案分别为以下算式

  1. a n s 1 = max ⁡ ( a 0 b 1 , a 0 ⋅ a 1 b 2 ) ans_1=\max({\frac{a_0}{b_1}},{\frac{a_{0}\cdot a_1}{b_2}}) ans1=max(b1a0,b2a0a1)
  2. a n s 2 = max ⁡ ( a 0 b 2 , a 0 ⋅ a 2 b 1 ) ans_2=\max({\frac{a_0}{b_2}},{\frac{a_0 \cdot a_2}{b_1}}) ans2=max(b2a0,b1a0a2)

明显可以看出:

{ a 0 ⋅ a 1 b 2 > a 0 b 2 a 0 ⋅ a 2 b 1 > a 0 b 1 \begin{cases}\frac{a_0\cdot a_1}{b_2}>\frac{a_0}{b_2}\\\frac{a_0\cdot a_2}{b_1}>\frac{a_0}{b_1}\end{cases} {b2a0a1>b2a0b1a0a2>b1a0

如果 a n s 1 < a n s 2 ans_1<ans_2 ans1<ans2 :

∵ ∵ a 0 ⋅ a 2 b 1 > a 0 b 1 \frac{a_0\cdot a_2}{b_1}>\frac{a_0}{b_1} b1a0a2>b1a0

∴ ∴ a 0 ⋅ a 2 b 1 > a 0 ⋅ a 1 b 2 \frac{a_0\cdot a_2}{b_1}>\frac{a_0\cdot a_1}{b_2} b1a0a2>b2a0a1

a 2 b 1 > a 1 b 2 \frac{a_2}{b_1}>\frac{a_1}{b_2} b1a2>b2a1

a 1 ⋅ b 1 < a 2 ⋅ b 2 a_1\cdot b_1<a_2\cdot b_2 a1b1<a2b2

按照上述结论:

cmp ⁡ ( q 1 , q 2 ) = { q 1 . a × q 1 . b < q 2 . a × q 2 . b t r u e q 1 . a × q 1 . b ≥ q 2 . a × q 2 . b f a l s e \operatorname{cmp}({q_1},{q_2})=\begin{cases}q_1.a\times q_1.b<q_2.a\times q_2.b&true\\q_1.a\times q_1.b\ge q_2.a\times q_2.b&false\end{cases} cmp(q1,q2)={q1.a×q1.b<q2.a×q2.bq1.a×q1.bq2.a×q2.btruefalse

按照该cmp排序并计算即可

### 关于 P7731 的题目解析 目前尚未找到针对 P7731 的具体官方题解或权威资料。然而,基于常见的编程竞赛问题模式以及已知的相关算法思路[^1],可以推测该类问题可能涉及动态规划、贪心策略或其他经典算法模型。 以下是关于此类问题的一般性分析框架: #### 动态规划的应用场景 如果 P7731 是一道典型的动态规划问题,则其核心在于状态定义与转移方程的设计。例如,在某些货币兑换问题中,可以通过维护两个数组分别表示当前持有的不同币种的最大价值[^2]。这种设计方式类似于引用中的美元汇率转换逻辑。 ```cpp #include <iostream> using namespace std; int main(){ int n; cin >> n; double dp1 = 100.0, dp2 = 0; // 初始条件设定 for(int i=1;i<=n;i++){ int a; cin >> a; double tmp = dp1; dp1 = max(dp1, dp2 / a * 100); // 更新美元最大值 dp2 = max(dp2, tmp / 100 * a); // 更新马克最大值 } cout << fixed << setprecision(2) << dp1; // 输出最终结果 } ``` 上述代码片段展示了如何通过迭代更新来解决多阶段决策优化问题。 #### 贪心算法的可能性 对于另一些特定类型的题目,采用贪心方法可能会更加高效。比如当输入数据满足某种单调性质时,可以直接选取局部最优解从而达到全局最佳效果。 ```cpp #include <bits/stdc++.h> using namespace std; struct Item { long long w,v; }item[1000]; bool cmp(Item x,Item y){ return (double)x.v/x.w>(double)y.v/y.w; } int main(){ int N,W; cin>>N>>W; for(int i=0;i<N;i++)cin>>item[i].w>>item[i].v; sort(item,item+N,cmp); double res=0; for(int i=0;i<N && W>0;i++){ if(W>=item[i].w){res+=item[i].v;W-=item[i].w;} else{res+=(double)item[i].v/(double)item[i].w*(double)W;W=0;} } printf("%.2f\n",res); } ``` 此段程序体现了利用物品单位重量价值排序后依次装载的过程。 ### 总结 尽管未能直接获取到 P7731 的确切解答方案,但从已有经验出发仍可构建合理的求解路径。无论是运用动态规划还是尝试其他技巧如模拟、枚举等均需紧密结合实际需求展开深入探讨。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值