一.统计学是什么?
统计学是一门从事数据采集、整理和分析的方法论科学,其目的是探索数据内在的规律性,以达到对研究总体的科学认识。
二、机器学习是什么?
机器学习(Machine Learning)是计算机科学的子领域,也是人工智能的一个分支和实现方式。
机器学习主要的理论基础涉及概率论、数理统计、线性代数、数学分析、数值逼近、最优化理论和计算复杂理论等,其核心要素是数据、算法和模型。
三、深度学习是什么?
深度学习是机器学习的一种方法,深度学习的典型应用是选择数据训练模型,然后用模型做出预测。
四、数据挖掘是什么?
数据挖掘使用机器学习、统计学和数据库等方法在相对大量的数据集中发现模式和知识,它涉及数据预处理、模型与推断、可视化等。
他们之间的联系是什么呢?
比如机器学习和深度学习。因为机器学习是AI的分支技术,而深度学习是机器学习的技术之一。从人工智能到机器学习,再到深度学习,它们之间是一种包含和被包含的关系。
再比如统计学、数据挖掘和机器学习。数据挖掘的很多算法都来自机器学习和统计学,而机器学习中有些算法借鉴了统计学理论。所以它们之间属于一种互相交织的关系。