837. 新21点
爱丽丝参与一个大致基于纸牌游戏 “21点” 规则的游戏,描述如下:
爱丽丝以 0 分开始,并在她的得分少于 K 分时抽取数字。 抽取时,她从 [1, W] 的范围中随机获得一个整数作为分数进行累计,其中 W 是整数。 每次抽取都是独立的,其结果具有相同的概率。
当爱丽丝获得不少于 K 分时,她就停止抽取数字。 爱丽丝的分数不超过 N 的概率是多少?
示例 1:
输入:N = 10, K = 1, W = 10
输出:1.00000
说明:爱丽丝得到一张卡,然后停止。
示例 2:
输入:N = 6, K = 1, W = 10
输出:0.60000
说明:爱丽丝得到一张卡,然后停止。
在 W = 10 的 6 种可能下,她的得分不超过 N = 6 分。
示例 3:
输入:N = 21, K = 17, W = 10
输出:0.73278
提示:
0 <= K <= N <= 10000
1 <= W <= 10000
如果答案与正确答案的误差不超过 10^-5,则该答案将被视为正确答案通过。
此问题的判断限制时间已经减少。
解题
当前数字为0,求停下来的数字在K~N之间的概率(停下来的数字范围在K ~ K+W之间);
解题:简单动态规划(超时)
dp[i]表示当前数字为i时停在K~N之间的概率;
当i在K~N时,已停下,停在K ~ N几率为1.0;
当i<K时,当前dp[i]为dp[i+1]~dp[i+W]的和 / W的值(因为有1/W的几率得到dp[i+1] ~ dp[i+W]);
由此可推得dp[0];
class Solution {
public:
double new21Game(int N, int K, int W) {
dp.resize(K+W+1,0.0); //加个1
for(int i=K;i<=N;i++)
dp[i]=1.0;
for(int i=K-1;i>=0;i--)
{
for(int j=i+1;j<=i+W;j++)
dp[i]+=dp[j];
dp[i]=dp[i]/W;
}
return dp[0];
}
private:
vector<double> dp;
};
动态规划改进
S时时记录i+1~i+W这W个数的概率之和,则S/W即为当前dp[i]的值;
每当i-1,则S-=dp[i+W]+dp[i],动态更新S;
class Solution {
public:
double new21Game(int N, int K, int W) {
dp.resize(K+W+1,0.0);
for(int i=K;i<=N;i++)
dp[i]=1.0;
// for(int i=K-1;i>=0;i--)
// dp[i]=dp[i+1]-dp[i+W+1]/W;
double S =min(N - K + 1, W);
// S = dp[k+1] + dp[k+2] + ... + dp[k+W]
for (int k = K - 1; k >= 0; --k) {
dp[k] = S / W;
S += dp[k] - dp[k + W];
}
return dp[0];
}
private:
vector<double> dp;
};
注意点
dp[i]代表已有i个数时结果得到K~N的概率,故可从K ~ N往前推;

探讨了在基于21点规则的游戏中,爱丽丝抽取数字直至达到或超过K分,但不超过N分的概率问题。通过动态规划方法,详细解析了如何高效计算这一概率,避免超时问题。
1960

被折叠的 条评论
为什么被折叠?



