- 博客(1488)
- 资源 (166)
- 收藏
- 关注
原创 2024年国考
∀xPx→Qx(所有参加奥运会的运动员 ( x ) 必须获得资格)∃xPx∧¬Ax∀xPx→Qx∧∃yPy∧¬Ay二,选择题(10 分)
2025-04-19 18:46:10
768
原创 2013 年同等学力人员申请硕士学位 学科综合水平全国统一考试 计算机科学与技术试卷
令 D(G)=\frac{1}{|V|} \sum_{v \in V} d(v) ,则用 D(G) 和 |V| 把 |E| 表示出来的表达式是 \qquad。对任意的 a, b \in Q ,定义二元运算 a \Delta b=(a \times b) / 2 ,则 Q 关于运算 \Delta 的单位元是 \qquad ,其中" \times "是有理数中通常的乘法运算。三,计算题(第 1 小题 3 分,第 2 小题 4 分,第 3 小题 6 分,共 13 分)
2025-04-19 07:14:35
174
原创 2019年计算机真题
等价关系的有序对个数每个划分块内的元素形成完全连接的等价类。{1,2}: (2^2 = 4) 个{3,4,5}: (3^2 = 9) 个{6,7}: (2^2 = 4) 个总计:(4 + 9 + 4 = 17)整除关系的有序对个数1整除所有数:(7) 对(包括自反)2整除2、4、6:(3) 对3整除3、6:(2) 对4、5、6、7仅自反:各(1) 对总计:(7 + 3 + 2 + 1 + 1 + 1 + 1 = 16)既对称又反对称的关系数目。
2025-04-12 18:22:55
541
原创 【Block总结】DRDB,空洞残差密集块|即插即用
本文提出了一种深度信息辅助的双任务协作去雾框架,通过差异感知机制和交替优化策略,实现了去雾与深度估计的相互促进。实验表明,该方法在合成和真实数据上均达到先进水平,为单幅图像去雾提供了新思路。未来可探索更轻量化的网络设计及跨任务泛化能力。
2025-04-08 06:58:23
848
1
原创 Meta Llama 4炸场!开源MoE模型登顶全球榜,单卡跑1000万token,价格打骨折
MoE架构革命:用20%算力干100%的活Llama 4首次引入MoE架构,每个token仅激活部分专家模块。例如Maverick的4000亿参数中,实际调用仅170亿,却能实现单卡运行的惊人效率。这种设计让模型像“智能路由器”,根据任务自动调度专家——写诗找文学专家,解方程找数学专家。
2025-04-07 19:00:00
849
原创 【Block总结】ENLTransformerBlock,高效非局部变换器块|即插即用
Perspective+ Unet 通过引入双路径编码策略、高效非局部变换器模块和跨尺度空间集成器,显著提升了医学图像分割的性能。该模型在局部细节和全局上下文的融合上表现出色,适用于需要高精度分割的复杂医学图像处理任务。
2025-04-06 08:24:53
472
原创 【Block总结】频域自适应空洞卷积FADC,即插即用
本论文提出了一种新的卷积方法——频率自适应空洞卷积(Frequency-Adaptive Dilated Convolution, FADC),旨在通过动态调整空洞率以适应输入数据的频率特性,从而克服传统固定空洞率卷积在频率响应方面的局限性。该方法在语义分割和目标检测任务中表现出显著的性能提升。
2025-04-06 04:00:00
793
原创 【Block总结】PlainUSR的局部注意力,即插即用|ACCV2024
这些创新点旨在解决现有方法在实时性能和计算效率上的瓶颈,同时保持竞争性的图像重建质量。局部注意力机制通过引入区域重要性图和门控机制,能够在局部范围内实现高阶信息交互。这种设计使得模型能够更有效地捕捉局部细节,同时避免了传统全局注意力机制可能带来的高计算成本[4][5][6]。局部注意力机制的设计重点在于减少计算复杂度。相比全局注意力,局部注意力将加权求和的范围限制在特定窗口内,从而显著降低了计算量。这种方法特别适合实时超分辨率任务,能够在保持性能的同时实现低延迟[3][4][5]。
2025-04-05 22:06:44
544
原创 【Block总结】PagFM,像素注意力引导融合模块|即插即用
PIDNet通过引入PID控制器的思想,设计了三分支架构(P、I、D分支)和高效模块(Pag、Bag、PAPPM),在保持高推理速度的同时实现了优异的分割精度。其在Cityscapes和CamVid等数据集上的表现表明,该模型适用于自动驾驶等对实时性和精度要求高的场景。
2025-04-05 21:17:23
725
原创 OverLoCK实战:使用OverLoCK实现图像分类任务(一)
EMA是一种加权移动平均技术,其中每个新的平均值都是前一个平均值和当前值的加权和。在深度学习中,EMA被用于模型参数的更新,以减缓参数在训练过程中的快速波动,从而得到更加平滑和稳定的模型表现。
2025-04-05 15:50:47
1722
2
原创 OverLoCK:一种采用“先总体把握再初步审视继而深入观察”架构的卷积神经网络(ConvNet),融合了上下文信息的动态卷积核
自上而下的注意力在人类视觉系统中扮演着关键角色,大脑首先对场景进行粗略浏览以发现显著线索(即先“纵观全局”),然后进行更细致的逐级检查(即再“仔细查看”)。然而,现代卷积神经网络(ConvNets)仍局限于金字塔结构,该结构通过连续下采样特征图来扩大感受野,忽略了这一重要的仿生学原理。我们提出了OverLoCK,这是首个明确整合自上而下注意力机制的纯卷积骨干网络架构。与金字塔骨干网络不同,我们的设计采用分支架构,包含三个协同子网络:1)一个编码低/中级特征的Base-Net;
2025-04-05 14:16:47
995
原创 【Block总结】自适应矩形卷积,即插即用|CVPR2025
本论文提出的自适应矩形卷积(ARConv)通过自适应学习卷积核的高度和宽度,并根据学习到的尺度动态调整采样点数量,为遥感图像融合任务提供了一种新颖有效的解决方案。ARNet在多个数据集上表现出色,且可视化研究表明卷积核能够根据物体大小和形状有效调整其高度和宽度,充分验证了该方法的有效性和创新性。
2025-04-05 08:42:10
1019
原创 【Block总结】ToST,统计量进行建模的Transformer|即插即用| ICLR 2025
Token Statistics Transformer (ToST)通过引入基于统计特征的注意力机制,成功解决了传统Transformer在处理长序列时面临的计算复杂度和资源消耗问题。其创新的TSSA模块不仅提高了模型的计算效率,还增强了模型的可解释性。ToST的设计为未来大模型的高效化、多模态融合和跨学科应用提供了新的思路,推动了Transformer架构的进一步发展。
2025-04-04 22:17:18
812
原创 【Block总结】轻量级门控瓶颈卷积GBC|即插即用|CVPR2025
SCSegamba通过结合SAVSS和MFS,显著增强了对裂缝形状和纹理的感知能力,同时保持了低参数量和计算资源需求。实验结果表明,该方法在多种复杂场景下均表现出色,适用于实际的裂缝检测任务,并适合在边缘设备上部署。未来的工作将结合多模态线索进一步提升分割质量,并优化VSS设计和扫描策略,以实现高质量分割结果与低计算资源的平衡。
2025-04-04 17:23:27
1206
原创 SAMV算法横空出世,分割、跟踪视频中任意运动目标
在计算机视觉领域,等问题表现不佳,而Meta的SAM模型虽在图像分割领域表现优异,却无法区分视频中的运动与静止对象。近日,一项名为的创新设计,在多个基准测试中性能,彻底改写了视频分割的技术格局!项目主页-https://motion-seg.github.io/代码链接-https://github.com/nnanhuang/SegAnyMo论文链接-https://arxiv.org/pdf/2503.22268。
2025-04-04 14:36:24
951
原创 突破传统限制!全新端到端开放词汇多目标跟踪框架OVTR,开启视觉追踪新纪元
在TAO数据集上的实验表明,OVTR在TETA指标上优于现有方法,验证集和测试集上分别超过OVTrack 12.9%和12.4%。,仅能跟踪训练集中预定义的类别(如“人”“车”),但现实场景中常出现训练时未见过的新类别(如“临时路障”“新型无人机”),传统模型在此类情况下易失效。随着视觉-语言模型的进化,这类技术将推动机器真正“理解”动态世界,为智能系统赋予人类般的场景适应力。,通过端到端架构与视觉-语言模型结合,首次实现了无需后处理、支持动态类别扩展的开放词汇跟踪,成为该领域的重要突破。
2025-04-04 14:12:06
662
原创 离线安装 Python 包及其全部依赖
最近服务器不让联网了,只能离线安装,我总结下面的教程,希望能帮助到同病相怜的人。确保下载时的操作系统、架构和 Python 版本与离线环境一致。通过以上步骤,可确保离线环境中完整安装包及其所有依赖。复杂依赖建议在虚拟环境中操作,避免污染全局环境。若需明确依赖版本,可生成。若环境无编译工具,使用。
2025-04-04 07:34:36
246
原创 python string 类型字符拼接 +=的缺点,以及取代方法
进行字符串拼接虽然语法简单,但在性能和代码维护方面存在明显缺陷。若拼接非字符串类型(如整数),需手动转换,否则抛出。,可显著提升代码效率和可维护性。:使用f-string或。拼接字符串,根据场景选择。在Python中,使用。或f-string。、f-string或。
2025-04-02 20:02:14
421
原创 MCP:AI时代的“万能插座”,开发者争相入局
• Function Calling是让AI“按按钮”,而MCP是让AI“开飞船”——不仅能触发单个功能,还能自主规划任务链条(如“分析数据→生成报告→邮件发送→Slack通知”)。举个栗子🌰:当你在Cursor中输入“帮我分析上周销售数据”,MCP客户端会通过服务器连接企业数据库,实时获取数据并生成可视化报告,全程无需人工干预。• MCP方案:只需开发一个MCP服务器,所有兼容模型即插即用,数据全程加密不泄露。• MCP生态:类似“应用商店”,开发者上传一次工具,所有模型均可调用。
2025-04-02 18:53:19
720
原创 我的创作纪念日
(2020.04.02):《C#调用托管C++类》聚焦跨语言编程痛点,为开发者提供实用解决方案,开启技术分享之路。:早期布局Transformer、Mamba等架构,近期聚焦动态卷积、频域学习等新兴方向。:以C#、C++等语言生态为核心,覆盖接口调用、内存管理等底层开发问题。:将状态空间模型(SSM)、博弈论等理论融入CV任务,拓展算法边界。
2025-04-01 19:00:00
455
原创 AI技术新突破:多模态与语音大模型重塑智能交互
本次技术突破标志着智能交互从单一功能向系统性解决方案演进。随着多模态融合、低时延响应等技术的普及,预计到2026年,相关技术将赋能超过80%的在线服务场景。体验官网:https://www.wenxiaoyan.com/
2025-03-31 19:25:10
969
原创 Transformers without Normalization
归一化层在现代神经网络中无处不在,并且长期以来一直被认为是必不可少的。本研究表明,不使用归一化的Transformer可以通过一种非常简单的技术达到相同或更好的性能。我们引入了动态双曲正切(Dynamic Tanh,简称DyT),这是一种逐元素运算DyTxtanhαxDyTxtanhαx,作为Transformer中归一化层的即插即用替代品。DyT的灵感来自于观察到Transformer中的层归一化常常产生类似双曲正切的S形输入输出映射。
2025-03-31 18:54:56
642
原创 aioredis.from_url函数详解
• 作用:选择 Redis 数据库编号(0~15),默认。• 作用:通过 Unix 域套接字连接(替代 TCP)• 作用:连接池最大连接数(默认由连接池实现决定)• 作用:单次 Redis 操作的读写超时时间。• 作用:复用外部连接池实例(避免重复创建)• 作用:自动将二进制响应转为字符串(默认。• 作用:Redis 认证密码,无密码留空。• 作用:TCP 连接建立的超时时间(秒)• 作用:强制使用单连接模式(禁用连接池)• 作用:Redis 服务器地址,默认。• 作用:启用 SSL/TLS 加密通信。
2025-03-28 09:48:01
872
原创 Redis 服务端主动回收配置
通过合理配置上述参数,可显著提升 Redis 的内存利用率与服务稳定性。:控制 LRU/LFU 近似算法的采样数量,数值越大淘汰精度越高,但 CPU 消耗增加。当内存占用超过该值时,触发主动回收机制。:建议设置为物理内存的 70%~80%,预留空间给系统进程及内存碎片。:默认 5,生产环境建议 10~20,在内存敏感场景可调至 50。:核心数据持久化+临时数据自动淘汰(如电商商品详情+购物车数据)。:平衡淘汰精度与性能,适合大多数读多写少的缓存场景。:默认启用,访问时检查键是否过期并删除。
2025-03-28 09:22:23
815
原创 合合信息“大模型加速器2.0”:破解复杂文档解析难题,助力大模型更“靠谱”
合合信息“大模型加速器2.0”的发布,标志着大模型在复杂文档解析方面取得了重要进展。通过破解复杂版面和图表解析难题,该技术为大模型提供了更加可靠、可信的语料数据,助力其在各行业应用中更加“靠谱”。未来,随着技术的持续优化迭代,“大模型加速器2.0”有望在更多领域展现出更大的价值。
2025-03-27 05:15:00
3429
原创 2014年计算机真题
答:全域:全体整数 P(x) 表示 x 为正数; Q(x) 表示 x 可以开平方,则: ∀x(P(x)→Q(x))\forall x(P(x) \rightarrow Q(x))∀x(P(x)→Q(x))答:设 M(x)\mathrm{M}(\mathrm{x})M(x) : x 为自然数; N(x, y): x 比 y 大,则原句可以化为以下形式: ¬∃x∀y(M(x)∧M(y)∧N(x,y))\neg \exists x \forall y(M(x) \wedge M(y)
2025-03-22 15:51:36
683
原创 MambaVision:一种Mamba-Transformer混合视觉骨干网络
我们提出了一种新型混合Mamba-Transformer主干网络,称为MambaVision,该网络专为视觉应用而设计。我们的核心贡献包括重新设计Mamba公式,以增强其对视觉特征的高效建模能力。此外,我们还对将视觉Transformer(ViT)与Mamba集成的可行性进行了全面的消融研究。我们的结果表明,在最终层添加几个自注意力模块可以显著提高捕捉长距离空间依赖关系的建模能力。基于我们的发现,我们引入了一系列具有分层架构的MambaVision模型,以满足各种设计标准。
2025-03-17 21:00:00
815
原创 【重磅突破】NVIDIA新作MambaVision:颠覆视觉任务的超高效混合模型来了!
MambaVision的"混合动力"设计,犹如在AI引擎中同时安装燃油机和电动机——Mamba负责高效处理局部特征,Transformer专注全局推理,两者接力协作实现"1+1>2"的效果。就像给模型装上了"涡轮增压引擎"🚀,在ImageNet分类任务中刷新SOTA,目标检测、分割等下游任务全面开花!传统方案(如Vim、VMamba)试图通过双向扫描或交叉扫描改进,却陷入"缝缝补补"的怪圈。在AI视觉领域,Transformer和CNN的"神仙打架"持续多年,而NVIDIA实验室最新发布的。
2025-03-17 20:00:00
1012
原创 2004年真题
1.有些人勤奋,但并非所有人都勤奋。答:设 M(x):x是人;R(x):x勤奋;N(x, y):x与y不相同,则原语句可表示为:∃x∃y (N(x,y)∧M(x)∧M(y)∧R(x)∧¬R(y))2.不管白猫黑猫,抓住老鼠就是好猫。答:设G(x):x是猫;Y(x):x是白猫;H(x):x是黑猫;M(x):x能抓老鼠;N(x):x是好猫;则原语句可表示为:∀x(G(x)∧(Y(x)∨H(x))∧M(x) →N(x))
2025-03-17 07:35:47
826
原创 【大模型部署实战】VLLM+OpenWebUI实现DeepSeek模型部署
vLLM(Very Large Language Model Serving)是由加州大学伯克利分校团队开发的高性能、低延迟大语言模型(LLM)推理和服务框架。其核心创新在于,通过将注意力键值(KV)缓存分页管理,显著提升显存利用率并降低碎片化问题,使吞吐量比传统框架(如Hugging Face Transformers)提升24倍。该框架支持和,能够高效处理8k+长上下文请求,并兼容OpenAI API接口,开发者可快速部署Hugging Face模型。
2025-03-16 12:54:31
2207
原创 [特殊字符] 突破性语音合成技术!Spark-TTS:用大模型打造你的专属AI语音助手 [特殊字符]️
你是否想过,未来的语音助手不仅能“说话”,还能根据你的需求调整音色、语速甚至情绪?近日,一项名为的突破性技术横空出世,它基于大语言模型(LLM),将文本转语音(TTS)技术推向了全新高度!今天,我们就来揭秘这项“会思考的语音合成黑科技”。
2025-03-16 07:51:57
505
原创 YOLOE:实时查看任何事物
目标检测和分割在计算机视觉应用中得到了广泛应用,然而,尽管YOLO系列等传统模型高效且准确,但它们受限于预定义的类别,阻碍了在开放场景中的适应性。最近的开放集方法利用文本提示、视觉提示或无提示范式来克服这一限制,但由于计算需求高或部署复杂,往往在性能和效率之间妥协。在本文中,我们介绍了YOLOE,它在一个高度高效的模型中集成了不同开放提示机制下的检测和分割,实现了实时感知任意物体的能力。对于文本提示,我们提出了可重参数化区域-文本对齐(RepRTA)策略。
2025-03-15 19:22:30
1016
原创 【高并发】Python线程池嵌套实战、问题分析与优化实践
线程资源消耗降低58%异常可追溯性提升系统吞吐量增加20%当遇到需要动态生成任务的场景时,建议优先考虑基于队列的任务分发机制,而非简单粗暴的线程池嵌套。对于更复杂的并发需求,可结合异步编程模型(如asyncio)或分布式任务框架来构建健壮的系统。
2025-03-10 07:11:31
1120
原创 【高并发】高速将图片提交到flask、fastapi等主流服务框架
通过以上改造,您可以在不修改视频切片逻辑的前提下,将图片请求的吞吐量提升至原有单线程的10倍以上(具体取决于服务端响应速度)。若需进一步优化,可结合异步IO与连接池技术(如。高性能,高并发的读取图片,并将图片传输到服务器的应用场景很多,比如上传图片到网站,将图片提交到后台推理等。这篇文章实现一种多线程并发方式将图片提交到后台。通过线程池管理并发请求,避免手动创建/销毁线程的开销,且支持动态控制并发量。• 建议通过压力测试确定最佳值(如从10逐步增加)。• 记录失败请求的图片路径,便于后续补传。
2025-03-10 07:03:22
489
原创 【Aioredis 实战总结】 aioredis 中 set 和 get方法的参数详解
通过合理组合参数,可实现灵活的缓存策略(如分布式锁、短期会话存储等)。(bool):保留键原有的过期时间(需 Redis 6.0+)(int/None):过期时间(毫秒),优先级高于。(int/None):过期时间(秒),例如。(str/None):指定解码方式(如。(str/bytes):存储的值。,仅当键不存在时设置值(类似。),默认返回字节(bytes),仅当键存在时设置值(类似。(str):要获取的键名。(str):存储的键名。表示 60 秒后过期。
2025-03-06 04:15:00
294
原创 【Aioredis实战总结】Aioredis简介
• 管道(Pipeline)、事务(Multi/Exec)、发布订阅(Pub/Sub)等高级功能。基于asyncio的非阻塞I/O模型,支持数万级并发请求。• 支持字符串、哈希、列表、集合等数据结构操作。• 连接池管理、哨兵模式、ACL权限控制等。• 提供完善的错误处理机制(如。:所有Redis命令需配合。:返回值默认是字节类型(如。调用,避免阻塞事件循环。高度一致,学习成本低。
2025-03-05 17:30:00
864
SparX实战:使用SparX实现图像分类任务
2025-01-29
DFFormer实战:使用DFFormer实现图像分类
2025-01-27
CrossFormer实战:使用CrossFormer实现图像分类任务
2025-01-12
DilateFormer实战:使用DilateFormer实现图像分类任务
2024-12-26
VOLO实战:使用VOLO实现图像分类任务
2024-11-25
DeBiFormer实战:使用DeBiFormer实现图像分类任务
2024-11-07
EfficientFormer实战:使用EfficientFormerV2实现图像分类任务
2024-09-19
GCViT实战:使用GCViT实现图像分类任务
2024-09-02
CAS-ViT实战:使用CAS-ViT实现图像分类任务
2024-08-22
GroupMamba实战:使用GroupMamba实现图像分类任务
2024-07-31
EfficientMod实战:使用EfficientMod实现图像分类任务
2024-07-20
RDNet实战:使用RDNet实现图像分类任务
2024-07-09
YoloV8改进策略-注意力篇-Block改进-附结构图-自研基于xLSTM的注意力
2024-07-01
StarNet实战:使用StarNet实现图像分类任务
2024-06-17
Vision-LSTM(ViL)实战:使用Vision-LSTM(ViL)实现图像分类任务
2024-06-11
MobileNetV4实战:使用MobileNetV4实现图像分类任务
2024-06-09
EfficientVMamba实战:使用 EfficientVMamba实现图像分类任务
2024-04-02
Hiera-MAE-Demo.zip
2024-03-05
YoloV8改进策略:CoordConv给卷积加上坐标,从而使其具备了空间感知能力.zip
2024-02-21
MogaNet实战:使用MogaNet实现图像分类任务
2024-02-12
YoloV8改进-三元注意力,小参数大能力,即插即用,涨点自如
2024-02-05
Vim实战:使用Vim实现图像分类任务
2024-01-30
FlashInternImage实战:使用FlashInternImage实现图像分类任务
2024-01-27
UniRepLKNet实战:使用UniRepLKNet实现图像分类任务
2024-01-13
TransXNet实战:使用TransXNet实现图像分类任务
2023-12-19
Hiera实战:使用Hiera实现图像分类任务
2023-12-07
RevCol实战:使用RevCol实现图像分类任务
2023-11-25
FastVIT实战:使用FastVIT实现图像分类
2023-08-21
VGGNet剪枝实战:使用VGGNet训练、稀疏训练、剪枝、微调等,剪枝出只有3M的模型
2023-08-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人