自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

AI浩

分享人工智能知识,包括:计算机视觉、NLP以及机器学习等领域。注重基础与实践,尽最大的努力让每个初学者看懂学会。

  • 博客(917)
  • 资源 (166)
  • 收藏
  • 关注

原创 Jetson NX 增加 swap空间

在开启多路测试的时候,发现SWAP空间不够了,板子非常的卡,解决的办法就是增加SWAP空间。

2022-12-08 14:02:41 66 1

原创 UnicodeDecodeError: ‘gbk‘ codec can‘t decode byte 0x80 in position 198: illegal multibyte sequence

在做YoloV5剪枝的时候,遇到如下问题;读取data的yaml文件遇到了无法解析的字符。新版本的YoloV5,在yaml文件里有个小火箭的图标把这个删除掉就可以了

2022-12-07 20:06:32 29 2

原创 KeyError: ‘model.2.cv2.bn‘

在做YoloV5剪枝的时候,出现的问题。问题如下:分析原因由于yoloV5有不同的版本,我们在训练的时候使用了预训练模型,但是预训练模型和这个版本的配置文件(yaml文件)不一致,所以在做剪枝的时候就会报错。在做稀疏训练的时候指定yaml模型文件。

2022-12-07 19:05:40 54

原创 AttributeError: ‘Conv‘ object has no attribute ‘fuseforward‘

分析原因这是由于YoloV5不同版本的问题,所以有部分的方法也不相同。在 common.py 中找到 Conv 类,将 foward_fuse 方法改成 fuseforward。即可解决问题。

2022-12-07 18:57:58 65

原创 Error Code 1: Cuda Runtime (invalid resource handle)

同时加载了多个TensorRT模型,就会出现如下问题:原因分析这种问题一般多发于在多线程中使用tensorrt,或者在主线程中定义tensorrt的引擎,然后在回调线程利用该引擎进行推理的时候,就会发生这样的错误。导入cuda包,然后初始化。在类初始化里面添加:在推理代码里面,再推理前加上 self.cfx.push(),在推理完成后,加上 self.cfx.pop()

2022-12-06 14:37:43 92 1

原创 forrtl: error (200): program aborting due to control-C event

在使用TensorRT模型做推理的时候,出现了如下错误:forrtl: error (200): program aborting due to control-C event安装或升级scipy如果安装失败,则加上国内源再试。运行结果:

2022-12-06 14:27:10 61

原创 Pytorch2.0发布了,向下兼容,加一句代码,性能翻番

介绍PyTorch 2.0,我们迈向PyTorch下一代2系列发行版的第一步。在过去的几年里,我们进行了创新和迭代,从PyTorch 1.0到最近的1.13,并转移到新成立的PyTorch基金会,它是Linux基金会的一部分。除了我们令人惊叹的社区之外,PyTorch最大的优势是我们继续作为一流的Python集成、命令式风格、API和选项的简单性。PyTorch 2.0提供了相同的急切模式开发和用户体验,同时从根本上改变和加强了PyTorch在底层编译器级别的操作方式。我们能够为动态形状和分布式提供更快的性

2022-12-05 11:01:17 344 1

原创 MobileOne实战:使用MobileOne实现图像分类任务(二)

完成上面的步骤后,就开始train脚本的编写,新建train.py.设置全局参数设置学习率、BatchSize、epoch等参数,判断环境中是否存在GPU,如果没有则使用CPU。建议使用GPU,CPU太慢了。设置存放权重文件的文件夹,如果文件夹存在删除再建立。接下来,查看全局参数:数据处理比较简单,加入了随机10度的旋转、高斯模糊、颜色的调整、做了Resize和归一化,定义Mixup函数。这里注意下Resize的大小,由于选用的Ghost模型输入是224×224的大小,所以要Resize为224×22

2022-12-04 07:00:00 71

原创 MobileOne实战:使用MobileOne实现图像分类任务(一)

论文地址:https://arxiv.org/abs/2211.06088代码地址:https://github.com/federicopozzi33/MobileOne-PyTorch另一个版本:https://github.com/shoutOutYangJie/MobileOne特征重用一直是轻量级卷积神经网络设计的关键技术。随着YoloV6和YoloV7的使用,这种方式越来越流行,MobileOne,也是这种方式。MobileOne(≈MobileNetV1+RepVGG+训练Trick)是

2022-12-03 20:51:43 77

原创 推荐一个对pytorch代码详细注释的github项目

今天在无意间找一个pytorch代码和注释的Github项目。先上项目:这个项目还有个网站,地址:https://nn.labml.ai/

2022-12-02 16:28:19 925 9

原创 RepGhost实战:使用RepGhost实现图像分类任务(二)

训练的主要步骤:1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。2、将数据输入mixup_fn生成mixup数据,然后输入model计算loss。3、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。4、如果使用混合精度,则with torch.cuda.amp.autocast(),开启混合精度。计算loss。scaler.scale(loss).backward(),梯度放大。

2022-12-01 06:00:00 89 2

原创 Jetson NX系统烧录以及CUDA、cudnn、pytorch等环境的安装

这两步比较简单,所以略了。虚拟机的配置需要注意硬盘空间大一点,至少40G。

2022-11-30 22:00:35 430

原创 RepGhost实战:使用RepGhost实现图像分类任务(一)

论文地址:https://arxiv.org/abs/2211.06088代码地址:https://github.com/ChengpengChen/RepGhost特征重用一直是轻量级卷积神经网络设计的关键技术。RepGhostNet在移动设备上比GhostNet和MobileNetV3更有效。在ImageNet数据集上,RepGhostNet和GhostNet 0.5X在相同的延时下,参数更少,成绩更高,Top-1精度相比GhostNet 0.5X模型 提高了2.5%。

2022-11-30 07:00:00 543 7

原创 【第57篇】RepGhost:一个通过重新参数化实现硬件高效的Ghost模块

随着移动和便携设备的普及,由于计算资源有限,高效的卷积神经网络(CNNs)变得不可或缺。为了达到提高cnn效率的目的,近年来提出了不同的方法,如轻量化架构设计[3,14,20,31,35,48]、神经架构搜索[13,27,38,44]、修剪[2,18,30,32]等,并取得了很大进展。在体系结构设计领域,信道数量多往往意味着网络容量大[17,23,24],特别是对于轻量CNNs[14,19,31,35]。

2022-11-29 15:26:31 328

原创 G-Ghost-RegNet实战:使用G-Ghost-RegNet实现图像分类任务(二)

训练的主要步骤:1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。2、将数据输入mixup_fn生成mixup数据,然后输入model计算loss。3、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。4、如果使用混合精度,则with torch.cuda.amp.autocast(),开启混合精度。计算loss。scaler.scale(loss).backward(),梯度放大。

2022-11-29 05:52:35 99

原创 G-Ghost-RegNet实战:使用G-Ghost-RegNet实现图像分类任务(一)

论文地址:https://arxiv.org/abs/2201.03297代码地址:https://github.com/huawei-noah/CV-Backbones上篇实战介绍了华为的GhostNet,上面的论文中,将GhostNet成为C-GhostNet,C-GhostNet中为实现轻量化,使用了一些低运算密度的操作。低运算密度使得GPU的并行计算能力无法被充分利用,从而导致C-GhostNet在GPU等设备上糟糕的延迟,因此需要设计一种适用于GPU设备的Ghost模块。

2022-11-28 20:59:06 410 2

原创 ImportError: cannot import name ‘container_abcs‘ from ‘torch._six‘

找到问题所在的文件,将这部分的代码用下面的代码替换。

2022-11-28 19:15:51 140

原创 AttributeError: module ‘torch.distributed‘ has no attribute ‘_all_gather_base‘

路径:apex/contrib/optimizers/distributed_fused_lamb.py。接下来添加环境变量。键,退出编辑模型,按。

2022-11-28 13:19:00 332

原创 ImportError: cannot import name ‘UnencryptedCookieSessionFactoryConfig‘ from ‘pyramid.session‘

在jetson nx上安装apex的时候,直接使用pip install apex命令安装的,调用时出现如下错误。

2022-11-28 11:11:40 200

原创 RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn

【代码】RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn。

2022-11-27 07:10:50 129

原创 AttributeError: Can‘t pickle local object ‘Stage.__init__.<locals>.<lambda>‘

打开serialization.py文件。

2022-11-26 20:56:32 127

原创 GhostNet实战:使用GhostNet实现图像分类任务(二)

训练的主要步骤:1、使用AverageMeter保存自定义变量,包括loss,ACC1,ACC5。2、将数据输入mixup_fn生成mixup数据,然后输入model计算loss。3、 optimizer.zero_grad() 梯度清零,把loss关于weight的导数变成0。4、如果使用混合精度,则with torch.cuda.amp.autocast(),开启混合精度。计算loss。scaler.scale(loss).backward(),梯度放大。

2022-11-24 06:00:00 100

原创 GhostNet实战:使用GhostNet实现图像分类任务(一)

GhostNet网络是2019年的发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC-2012分类数据集的达到了75.7%的top-1精度。论文链接:https://arxiv.org/abs/1911.11907作者解读:https://zhuanlan.zhihu.com/p/109325275开源代码:https://github.com/huawei-noah/ghostnet。

2022-11-23 17:01:51 158 2

原创 GhostNet网络解析

GhostNet网络是2019年的发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC-2012分类数据集的达到了75.7%的top-1精度。论文链接:https://arxiv.org/abs/1911.11907作者解读:https://zhuanlan.zhihu.com/p/109325275开源代码:https://github.com/huawei-noah/ghostnet论文翻译:https://wanghao

2022-11-23 10:19:57 1051

原创 非常不错的train方法模板

记录一下,非常不错的train模板。通过这个模板可以学到很多。

2022-11-22 18:08:38 158 3

原创 AugMixDataset的一些示例

1、第一个示例第二个示例第三个示例剩下的详见:https://programtalk.com/python-more-examples/timm.data.AugMixDataset/

2022-11-22 18:04:03 32

原创 【第56篇】GhostNet:廉价操作得到更多的特征

深度卷积神经网络在各种计算机视觉任务中表现出出色的性能,如图像识别[30,13]、目标检测[43,33]和语义分割[4]。传统的CNNs通常需要大量的参数和浮点运算(FLOPs)才能达到令人满意的精度,例如ResNet-50[16]的参数约为25.6M,处理大小为224 × 224的图像需要4.1B FLOPs。因此,深度神经网络设计的近期趋势是探索移动设备(如智能手机和自动驾驶汽车)性能可接受的便携、高效网络架构。

2022-11-22 17:28:18 807 1

原创 知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18

复杂度的检测模型虽然可以取得SOTA的精度,但它们往往难以直接落地应用。模型压缩方法帮助模型在效率和精度之间进行折中。知识蒸馏是模型压缩的一种有效手段,它的核心思想是迫使轻量级的学生模型去学习教师模型提取到的知识,从而提高学生模型的性能。已有的知识蒸馏方法可以分别为三大类:今天我们就尝试用基于关系特征的NST知识蒸馏算法完成这篇实战。NST蒸馏是对模型里面的的Block最后一层Feature做蒸馏,所以需要最后一层block的值。所以我们对模型要做修改来适应NST算法,并且为了使Teacher和Studen

2022-11-22 09:31:10 1395

原创 【第55篇】剪枝算法:通过网络瘦身学习高效卷积网络

近年来,卷积神经网络(CNNs)已成为各种计算机视觉任务的主要方法,如图像分类[22],目标检测[8],语义分割[26]。大规模的数据集,高端的现代图形处理器和新的网络架构允许开发前所未有的大型CNN模型。例如,从AlexNet [22], VGGNet[31]和GoogleNet[34]到ResNets [14], ImageNet分类挑战赛的获胜者模型已经从8层发展到100多层。然而,较大的cnn虽然具有更强的表示能力,但对资源的需求更大。

2022-11-18 18:27:52 443

原创 知识蒸馏IRG算法实战:使用ResNet50蒸馏ResNet18

复杂度的检测模型虽然可以取得SOTA的精度,但它们往往难以直接落地应用。模型压缩方法帮助模型在效率和精度之间进行折中。知识蒸馏是模型压缩的一种有效手段,它的核心思想是迫使轻量级的学生模型去学习教师模型提取到的知识,从而提高学生模型的性能。已有的知识蒸馏方法可以分别为三大类:模型没有用pytorch官方自带的,而是参照以前总结的ResNet模型修改的。ResNet模型结构如下图:ResNet18, ResNet34模型的残差结构是一致的,结构如下:代码如下:resnet.py主要修改了输出结果,将每

2022-11-18 10:25:06 326

原创 FastReid模型转为ONNX和TensorRT模型

参照:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122899728 解决。看到这个结果说明转换成功了。然后再执行上面的命令。

2022-11-16 18:01:57 451

原创 AttributeError: ‘tensorrt.tensorrt.Builder‘ object has no attribute ‘build_cuda_engine‘

tensorrt版本大于等于7时,不再使用build_cuda_engine。

2022-11-16 17:20:20 177

原创 RKD知识蒸馏实战:使用CoatNet蒸馏ResNet

知识蒸馏(Knowledge Distillation),简称KD,将已经训练好的模型包含的知识(”Knowledge”),蒸馏(“Distill”)提取到另一个模型里面去。

2022-11-15 22:31:27 121

原创 【第54篇】知识蒸馏:Distilling the Knowledge in a Neural Network

提高几乎所有机器学习算法性能的一个非常简单的方法是用相同的数据训练许多不同的模型,然后对它们的预测[3]求平均值。不幸的是,使用整个模型集合进行预测是很麻烦的,而且可能计算成本太高,无法部署到大量用户中,特别是当单个模型是大型神经网络时。Caruana和他的合作者[1]已经证明,可以将集合中的知识压缩到一个更容易部署的单一模型中,我们使用不同的压缩技术进一步开发了这种方法。

2022-11-13 14:43:21 629 1

原创 知识蒸馏算法汇总

知识蒸馏有两大类:一类是logits蒸馏,另一类是特征蒸馏。logits蒸馏指的是在softmax时使用较高的温度系数,提升负标签的信息,然后使用Student和Teacher在高温softmax下logits的KL散度作为loss。中间特征蒸馏就是强迫Student去学习Teacher某些中间层的特征,直接匹配中间的特征或学习特征之间的转换关系。例如,在特征No.1和No.2中间,知识可以表示为如何模做两者中间的转化,可以用一个矩阵让学习者产生这个矩阵,学习者和转化之间的学习关系。

2022-11-12 06:00:00 771

原创 知识蒸馏实战:使用CoatNet蒸馏ResNet

知识蒸馏(Knowledge Distillation),简称KD,将已经训练好的模型包含的知识(”Knowledge”),蒸馏(“Distill”)提取到另一个模型里面去。

2022-11-10 18:14:46 1233 7

原创 今天我十万粉了

记录一下,从2020年4月份到2022年11月10号,十万粉的目标达成。

2022-11-10 11:33:43 87 2

原创 TokenMix数据增强

代码链接:https://github.com/Sense-X/TokenMix论文链接:https://arxiv.org/abs/2207.08409tokenmix.py调用方式和mixup的使用方式一样

2022-11-09 17:23:44 297

原创 Ubuntu 22.04安装Cuda11.7和cudnn8.6

打开‘软件和更新。点击附加驱动安装显卡驱动如果已经安装显卡驱动,请忽略上面的步骤。

2022-11-08 18:33:59 1275

转载 轻量型目标检测算法总结

近两年目标检测算法发展非常的快,恍惚一看,单阶段算法几乎统一了目标检测,各种高性能的目标检测算法层出不穷,印象中是在YOLOv4出来后,基于YOLO的改进变得一发不可收拾,各种改进版本精度越来越高、速度越来越快,同时模型体积也越来越小,越来越多的轻量型模型涌现,更适合移动端部署。

2022-11-08 11:30:04 149

MobileOne实战:使用MobileOne实现图像分类任务.zip

随着YoloV6和YoloV7的使用,这种方式越来越流行,MobileOne,也是这种方式。MobileOne(≈MobileNetV1+RepVGG+训练Trick)是由Apple公司提出的一种基于iPhone12优化的超轻量型架构,在ImageNet数据集上以<1ms的速度取得了75.9%的Top1精度。 文章链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/128106644

2022-11-30

RepGhost-Demo.zip

特征重用一直是轻量级卷积神经网络设计的关键技术。RepGhostNet在移动设备上比GhostNet和MobileNetV3更有效。在ImageNet数据集上,RepGhostNet和GhostNet 0.5X在相同的延时下,参数更少,成绩更高,Top-1精度相比GhostNet 0.5X模型 提高了2.5%。 详见文章: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/128100230?spm=1001.2014.3001.5501

2022-11-29

G-Ghost-RegNet实战.zip

作者等人利用观察到的阶段性特征冗余,设计G-Ghost模块并应用于GPU等设备,实现了一个在GPU上具有SOTA性能的轻量级CNN。G-Ghost中g_ghost_regnetx_160模型在ImageNet上取的了79.9%的成绩。 我这篇文章主要讲解如何使用G-Ghost完成图像分类任务,接下来我们一起完成项目的实战。经过测试,G-Ghost在植物幼苗数据集上实现了97+%的准确率。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/128086517

2022-11-29

Ghost-Demo.zip

GhostNet实战:使用GhostNet实现图像分类任务用到的数据集和python文件。 文章链接: https://wanghao.blog.csdn.net/article/details/127993081

2022-11-24

知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18.zip

NST蒸馏是对模型里面的的Block最后一层Feature做蒸馏,所以需要最后一层block的值。所以我们对模型要做修改来适应NST算法,并且为了使Teacher和Student的网络层之间的参数一致,我们这次选用CoatNet作为Teacher模型,选择ResNet18作为Student。 https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127975441?spm=1001.2014.3001.5501

2022-11-22

知识蒸馏IRG算法实战:使用ResNet50蒸馏ResNet18.zip

知识蒸馏IRG算法实战:使用ResNet50蒸馏ResNet18 的源代码。详细看文章:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127912648?spm=1001.2014.3001.5501

2022-11-20

RKD知识蒸馏实战:使用CoatNet蒸馏ResNet.zip

RKD实现对模型的蒸馏。与上一篇(https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127787791?spm=1001.2014.3001.5501)蒸馏的方法有所不同,RKD是对展平层的特征做蒸馏,蒸馏的loss分为二阶的距离损失Distance-wise Loss和三阶的角度损失Angle-wise Loss。 链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127874090

2022-11-16

美俄飞机标注第二版03.zip

图片来自谷歌地球,0.5分辨率。一张图片对应一座机场。标注采用Labelme矩形框标注([x1,y1,x2,y2])。方便大家转为各种格式。这是第三部分。里面有个ppt,是我对飞机的总结。

2022-11-13

美俄飞机标注第二版02.zip

图片来自谷歌地球,0.5分辨率。一张图片对应一座机场。标注采用Labelme矩形框标注([x1,y1,x2,y2])。方便大家转为各种格式。这是第二部分

2022-11-13

美俄飞机标注第二版01.zip

图片来自谷歌地球,0.5分辨率。一张图片对应一座机场。标注采用Labelme矩形框标注([x1,y1,x2,y2])。方便大家转为各种格式。

2022-11-13

人像抠图(matting) 数据集的alpha图.zip

北京玩星汇聚科技有限公司所高质量标注并开源的一份人像抠图(matting) 数据集,是目前已知最大的人像matting数据集,包含 34427 张图像和对应的matting结果图,这个数据集缺乏更精细的alpha图。这个图是我花费了两个月的时间计算出来的。

2022-11-12

KD知识蒸馏实战案例.zip

知识蒸馏(Knowledge Distillation),简称KD,将已经训练好的模型包含的知识(”Knowledge”),蒸馏(“Distill”)提取到另一个模型里面去。 本例是知识蒸馏实战案例

2022-11-10

RetinexNet,Pytorch版本代码,包含数据集

对Pytroch版本的代码做了整理,直接点击train.py即可完成训练。

2022-10-17

moviepy处理视频帧和遍历的方式处理视频帧速度对比代码

使用moviepy处理视频帧,比直接遍历的方式快一些。 详见:https://wanghao.blog.csdn.net/article/details/127319849?spm=1001.2014.3001.5502

2022-10-14

MaxViT实战:使用MaxViT实现图像分类任务

MaxViT,是今年谷歌提出分层Transformer的模型,MaxViT 在各种设置下都达到了最先进的性能:ImageNet-1K分类任务,MaxViT 达到了 86.5% top-1 准确率 https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127180668

2022-10-12

YoloV7实战:手把手教你使用Yolov7进行物体检测(附数据集)源码

YOLOv7 在 5 FPS 到 160 FPS 范围内的速度和准确度都超过了所有已知的物体检测器,并且在 GPU V100 上 30 FPS 或更高的所有已知实时物体检测器中具有最高的准确度 56.8% AP。https://wanghao.blog.csdn.net/article/details/126361009

2022-10-12

Swin Transformer v2实战:使用Swin Transformer v2实现图像分类

Swin Transformer v2解决了大型视觉模型训练和应用中的三个主要问题,包括训练不稳定性、预训练和微调之间的分辨率差距以及对标记数据的渴望。 链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/127168900

2022-10-12

RepVgg实战:使用RepVgg实现图像分类

所谓“VGG式”指的是: 1. 没有任何分支结构。即通常所说的plain或feed-forward架构。 2. 仅使用3x3卷积。 3. 仅使用ReLU作为激活函数。 详见: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/126516646

2022-10-12

mot17_sbs_S50.pth

预训练模型

2022-09-20

YoloV6实战用到的资料.zip

YOLOv6 主要在 BackBone、Neck、Head 以及训练策略等方面进行了诸多的改进: - 统一设计了更高效的 Backbone 和 Neck :受到硬件感知神经网络设计思想的启发,基于 RepVGG style[4] 设计了可重参数化、更高效的骨干网络 EfficientRep Backbone 和 Rep-PAN Neck。 - 优化设计了更简洁有效的 Efficient Decoupled Head,在维持精度的同时,进一步降低了一般解耦头带来的额外延时开销。 - 在训练策略上,采用Anchor-free 无锚范式,同时辅以 SimOTA[2] 标签分配策略以及 SIoU[9] 边界框回归损失来进一步提高检测精度。 这个资料是Yolov6实战的资料,包含数据集和代码,开箱即用。

2022-07-03

MicroNet实战:使用MicroNet实现图像分类

本文通过对植物幼苗分类的实际例子来感受一下MicroNet模型的效果。模型来自官方,我自己写了train和test部分。从得分情况来看,这个模型非常的优秀,我选择用的MicroNet-M3模型,大小仅有6M,但是ACC在95%左右,成绩非常惊艳!!! 通过这篇文章能让你学到: 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 如何配置MicroNet模型实现训练? 如何使用pytorch自带混合精度? 如何使用梯度裁剪防止梯度爆炸? 如何使用DP多显卡训练? 如何绘制loss和acc曲线? 如何生成val的测评报告? 如何编写测试脚本测试测试集? 如何使用余弦退火策略调整学习率? 如何使用AverageMeter类统计ACC和loss等自定义变量? 如何理解和统计ACC1和ACC5? 原文链接: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/125223458?spm=1001.2014.3001.5501

2022-06-11

基于阿里Semantatic Human Matting算法,实现精细化人物抠图

基于深度学习技术研发的人像抠图技术。可识别视频图像中的人像区域,包括头部、半身、全身位置,抠出人像部分后,配以不同背景图片、效果,实现娱乐化需求,支持用户玩转更多个性化操作,常用于直播、视频场景中。

2022-06-06

ConvMAE_demo.zip

本资源让你学到: 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 如何调用自定义的模型? 如何使用pytorch自带混合精度? 如何使用梯度裁剪防止梯度爆炸? 如何使用DP多显卡训练? 如何绘制loss和acc曲线? 如何生成val的测评报告? 如何编写测试脚本测试测试集? 如何使用余弦退火策略调整学习率? 如何使用AverageMeter类统计ACC和loss等自定义变量? 如何理解和统计ACC1和ACC5? 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/125042460

2022-05-31

ConvMAE: Masked Convolution Meets Masked Autoencoders 预训练权重

ConvMAE: Masked Convolution Meets Masked Autoencoders 预训练权重

2022-05-26

RepLKNet实战:使用RepLKNet实现对植物幼苗的分类(非官方)

本文通过对植物幼苗分类的实际例子来感受一下超大核的魅力所在。这篇文章能让你学到: 通过对论文的解读,了解RepLKNet超大核的设计思想和架构。 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 如何调用自定义的模型? 如何使用混合精度训练? 如何使用梯度裁剪防止梯度爆炸? 如何使用DP多显卡训练? 如何绘制loss和acc曲线? 如何生成val的测评报告? 如何编写测试脚本测试测试集? 如何使用余弦退火策略调整学习率? 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124959038

2022-05-25

RepLKNet-31B_ImageNet-1K_224.pth

RepLKNet-31B的预训练模型

2022-05-25

MixNet实战:使用MixNet实现图像分类

本文从实战的角度出发,带领大家感受一下MixNet,我们还是使用以前的植物分类数据集,模型采用mixnet_m。 通过本文你可以学习到: 1、如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段? 2、如何调用自定义的模型? 3、如何使用混合精度训练? 4、如何使用梯度裁剪防止梯度爆炸? 5、如何使用DP多显卡训练? 6、如何绘制loss和acc曲线? 7、如何生成val的测评报告? 8、如何编写测试脚本测试测试集? 9、如何使用余弦退火策略调整学习率? 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124845052

2022-05-18

提取人脸特征的三种方法

第一种方法 直接使用dlib。 1、使用dlib.get_frontal_face_detector()方法检测人脸的位置。 2、使用 dlib.shape_predictor()方法得到人脸的关键点。 3、使用dlib.face_recognition_model_v1()方法提取特征。 第二种方法 使用深度学习方法查找人脸,dlib提取特征。 第三种使用insightface提取人脸特征 InsightFace 是一个开源的 2D&3D 深度人脸分析工具箱,其中高效地实现了丰富多样的人脸识别、人脸检测和人脸对齐算法,并且针对训练和部署进行了优化,在多项算法测评、比赛获得优胜。 文章链接:https://wanghao.blog.csdn.net/article/details/124703863?spm=1001.2014.3001.5502

2022-05-11

MMDetection实战:MMDetection训练与测试

MMDetection是商汤和港中文大学针对目标检测任务推出的一个开源项目,它基于Pytorch实现了大量的目标检测算法,把数据集构建、模型搭建、训练策略等过程都封装成了一个个模块,通过模块调用的方式,我们能够以很少的代码量实现一个新算法,大大提高了代码复用率。 GitHub链接:https://github.com/open-mmlab/mmdetection。 Gitee链接:https://gitee.com/open-mmlab/mmdetection。 主分支代码目前支持 PyTorch 1.5 以上的版本。主要特性: 模块化设计 MMDetection 将检测框架解耦成不同的模块组件,通过组合不同的模块组件,用户可以便捷地构建自定义的检测模型 丰富的即插即用的算法和模型 MMDetection 支持了众多主流的和最新的检测算法,例如 Faster R-CNN,Mask R-CNN,RetinaNet 等。 速度快 基本的框和 mask 操作都实现了 GPU 版本,训练速度比其他代码库更快或者相当,包括 Detectron2, maskrcnn-benchm

2022-05-09

图像分割模型——segmentation_models_pytorch和albumentations 组合实现多类别分割

segmentation_models_pytorch是一款非常优秀的图像分割库,albumentations 是一款非常优秀的图像增强库,这篇文章将这两款优秀结合起来实现多类别的图像分割算法。数据集选用CamVid数据集,类别有:'sky', 'building', 'pole', 'road', 'pavement','tree', 'signsymbol', 'fence', 'car','pedestrian', 'bicyclist', 'unlabelled'等12个类别。数据量不大,下载地址:[mirrors / alexgkendall / segnet-tutorial · GitCode](https://gitcode.net/mirrors/alexgkendall/segnet-tutorial?utm_source=csdn_github_accelerator)。 通过这篇文章,你可以学习到: 1、如何在图像分割使用albumentations 增强算法? 2、如何使用dice_loss和cross_entropy_loss?

2022-05-05

SwinIR实战:详细记录SwinIR的训练过程

在写这边文章之前,我已经翻译了论文,讲解了如何使用SWinIR进行测试? 接下来,我们讲讲如何SwinIR完成训练,有于作者训练了很多任务,我只复现其中的一种任务。

2022-05-01

SwinIR超分测试改动代码

本文介绍如何使用SwinIR和预训练模型实现图像的超分。

2022-04-30

MobileVIT实战:使用MobileVIT实现图像分类

目前,Transformer已经霸榜计算机视觉各种任务,但是缺点也很明显就是参数量太大无法用在移动设备,为了解决这个问题,Apple的科学家们将CNN和VIT的优势结合起来,提出了一个轻量级的视觉网络模型mobileViT。 根据论文中给出的Top-1成绩的对比结果,我们可以得出,xs模型参数量比经典的MobileNetV3小,但是精度却提高了7.4%,标准的S模型比ResNet-101,还高一些,但是参数量也只有ResNet-101的九分之一。这样的成绩可谓逆天了! 本文从实战的角度出发,带领大家感受一下mobileViT,我们还是使用以前的植物分类数据集,模型采用MobileViT-S。

2022-04-27

SWA实战:使用SWA进行微调,提高模型的泛化.zip

SWA简单来说就是对训练过程中的多个checkpoints进行平均,以提升模型的泛化性能。记训练过程第i ii个epoch的checkpoint为w i w_{i}w i ​ ,一般情况下我们会选择训练过程中最后的一个epoch的模型w n w_{n}w n ​ 或者在验证集上效果最好的一个模型w i ∗ w^{*}_{i}w i ∗ ​ 作为最终模型。但SWA一般在最后采用较高的固定学习速率或者周期式学习速率额外训练一段时间,取多个checkpoints的平均值。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124414939

2022-04-26

Resnet实战:单机多卡DDP方式、混合精度训练

本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,模型使用最经典的resnet50,演示如何实现混合精度训练以及如何使用DDP的方式实现多卡并行训练。 通过本文你和学到: 1、如何使用混合精度训练? 2、如何制作ImageNet数据集? 3、如何使用DDP方式的进行多卡训练? 4、如何使用Mixup数据增强。 5、如何进行多卡BN同步? 6、如何使用余弦退火调整学习率? 7、如何使用classification_report实现对模型的评价。 8、预测的两种写法。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124196817

2022-04-15

使用segmentation_models.pytorch图像分割框架实现对人物的抠图.zip

今天这篇文章向大家展示如何使用segmentation_models.pytorch实现语义分割算法。 通过这篇文章,你可以学到: 1、如何使用segmentation_models.pytorch图像分割框架实现语义分割算法? 2、如何使用和加载语义分割数据集? 3、如何使用交叉熵和diceloss组合? 4、如何使用wandb可视化。 5、了解二分类语义分割的常用做法。 6、如何实现二分类语义分割的训练。 7、如何实现二分类语义分割的预测。 我会在文章的末尾放上本文用的代码和数据集,可以让无法复现的朋友,通过下载我的代码快速复现算法,但是我还是希望大家能一步一步的去操作。如果有错误,也欢迎大家指正,谢谢! 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124069990

2022-04-09

Deeplab实战:使用deeplabv3实现对人物的抠图.zip

本文实现了用deeplabv3对图像做分割,通过本文,你可以学习到: 1、如何使用pytorch自带deeplabv3对图像对二分类的语义分割。pytorch自带的deeplabv3,除了deeplabv3_resnet50,还有deeplabv3_resnet101,deeplabv3_mobilenet_v3_large,大家可以尝试更换模型做测试。 2、如何使用wandb可视化。 3、如何使用交叉熵和dice_loss组合。 4、如何实现二分类语义分割的预测。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/124039170

2022-04-08

UNet语义分割实战:使用UNet实现对人物的抠图.zip

今天这篇文章讲解如何使用UNet实现图像的二分类分割。 关于二分类一般有两种做法: 第一种输出是单通道,即网络的输出 output 为 [batch_size, 1, height, width] 形状。其中 batch_szie 为批量大小,1 表示输出一个通道,height 和 width 与输入图像的高和宽保持一致。 在训练时,输出通道数是 1,网络得到的 output 包含的数值是任意的数。给定的 target ,是一个单通道标签图,数值只有 0 和 1 这两种。为了让网络输出 output 不断逼近这个标签,首先会让 output 经过一个sigmoid 函数,使其数值归一化到[0, 1],得到 output1 ,然后让这个 output1 与 target 进行交叉熵计算,得到损失值,反向传播更新网络权重。最终,网络经过学习,会使得 output1 逼近target。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/123987321?spm=1001.2014.3001.5501

2022-04-06

DBNet实战:详解DBNet训练与测试(pytorch)

论文连接:https://arxiv.org/pdf/1911.08947.pdf github链接:github.com 网络结构 首先,图像输入特征提取主干,提取特征; 其次,特征金字塔上采样到相同的尺寸,并进行特征级联得到特征F; 然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T) 最后,通过P和F计算近似二值图(approximate binary map B) 在训练期间对P,T,B进行监督训练,P和B是用的相同的监督信号(label)。在推理时,只需要P或B就可以得到文本框。 网络输出: 1、probability map, wh1 , 代表像素点是文本的概率 2、threshhold map, wh1, 每个像素点的阈值 3、binary map, wh1, 由1,2计算得到,计算公式为DB公式 文章链接:https://wanghao.blog.csdn.net/article/details/123904386

2022-04-01

基于文本字符的交易验证码识别0.98+解决方案

我的方案是:EfficientNetV1-B7+MixUp+CutOut。后期加入了CutMix,没有来得及测试效果。把验证码识别按照多标签分类去做。

2022-03-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除