- 博客(1518)
- 资源 (166)
- 收藏
- 关注
原创 error: subprocess-exited-with-error【已解决】
错误和文件找不到的问题。关键是确保安装所有构建依赖并预先构建扩展模块。如果不行可以从下面的方式中找解决方法。这些步骤应该能解决您遇到的。
2025-06-06 19:30:00
118
原创 【Block总结】DBlock,结合膨胀空间注意模块(Di-SpAM)和频域模块Gated-FFN|即插即用|CVPR2025
标题: DarkIR: Robust Low-Light Image Restoration作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde论文链接:https://arxiv.org/pdf/2412.13443GitHub链接:https://github.com/cidautai/DarkIR。
2025-06-06 19:00:00
704
原创 【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025
标题: DarkIR: Robust Low-Light Image Restoration作者: Daniel Feijoo, Juan C. Benito, Alvaro Garcia, Marcos Conde论文链接:https://arxiv.org/pdf/2412.13443GitHub链接:https://github.com/cidautai/DarkIR。
2025-06-06 13:06:19
400
原创 实现基于Yolo的异常聚集算法
基于YOLO检测算法实现“异常聚集”检测是一个很实用的应用场景,比如人群过度聚集、车辆拥堵、特定物品(如垃圾、危险物)堆积等。。bboxclass_idconfidence这是判断“异常聚集”的核心。利用上一步得到的目标位置信息,分析它们的空间分布。
2025-06-05 21:45:00
864
1
原创 build op model failed, result = 500002[FUNC:ReportInnerError][FILE:log_inner.cpp][LINE:145]
安装缺少的第三方库,执行命令.
2025-06-03 22:00:00
221
原创 SyntaxError: Non-UTF-8 code starting with ‘\xb1‘ in file /root/clip_demo.py on line 9, but no encodi
这个错误表示您的 Python 文件包含非 UTF-8 编码的字符(可能是中文字符或其他特殊字符),但没有在文件开头声明编码格式。根据 Python 的 PEP 263 规范,您需要在文件开头添加编码声明。在您的 Python 文件(
2025-06-03 22:00:00
204
1
原创 [Set][Options]OpCompileProcessor init failed![FUNC:ReportInnerError][FILE:log_inner.cpp][LIN
安装attrs,执行命令。
2025-06-03 21:45:00
123
原创 ImportError: libGL.so.1: cannot open shared object file: No such file or directory
安装缺失的图形库 (推荐)
2025-06-03 21:30:00
198
原创 【Block总结】LRSA,局部区域自注意力|即插即用
本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。
2025-06-02 20:08:47
690
原创 【Block总结】TAB,令牌聚合块|融合组内自注意力(IASA)和组间交叉注意力(IRCA)|即插即用
本文提出了一种新颖的轻量级图像超分辨率网络,称为内容感知令牌聚合网络(CATANet)。该网络旨在解决基于Transformer的方法在高空间分辨率下的计算复杂度问题。CATANet通过高效的内容感知令牌聚合模块(CATA)来捕捉长距离依赖关系,同时保持高推理速度。
2025-06-01 07:36:46
524
原创 CATANet:面向轻量级图像超分辨率的高效内容感知令牌聚合方法
基于Transformer的方法在图像超分辨率(SR)等底层视觉任务中展现出了令人印象深刻的性能。然而,其计算复杂度随空间分辨率呈二次方增长。一系列研究试图通过将低分辨率(LR)图像划分为局部窗口、轴向条纹或膨胀窗口来解决这一问题。超分辨率(SR)通常利用图像的冗余性进行重建,而这种冗余性不仅存在于局部区域,也存在于远距离区域。然而,这些方法将注意力计算限制在内容无关的局部区域,直接限制了注意力机制捕捉远距离依赖关系的能力。
2025-06-01 06:24:20
973
原创 【Block总结】Dynamic Tanh (DyT)|即插即用|何凯明和Yann LeCun署名
Dynamic Tanh (DyT) 是一种简单但革命性的技术,挑战了归一化层在深度学习中的传统地位。它通过轻量化的设计和高效的实现,显著提升了Transformer模型的训练和推理效率,同时保持甚至超越了归一化模型的性能。DyT的提出为深度学习模型的设计提供了新的思路,尤其适合资源敏感型场景和大规模模型的优化。else:return x# 定义输入张量大小(Batch、Channel、Height、Wight)
2025-05-31 17:01:18
97
原创 AttributeError: Can‘t pickle local object ‘PreTrainedModel.enable_input_require_grads.<locals>.make_
在使用LLama Factory做sft训练的时候遇到了这个问题。
2025-05-30 19:30:00
175
原创 DeepSeekMath:突破开放式语言模型中数学推理能力的极限
由于数学推理具有复杂且结构化的特性,这对语言模型构成了重大挑战。在本文中,我们介绍了 DeepSeekMath 7B 模型,该模型在 DeepSeek-Coder-Base-v1.5 7B 模型的基础上,使用从 Common Crawl 获取的 1200 亿个与数学相关的标记,以及自然语言和代码数据继续进行预训练。在不依赖外部工具包和投票技术的情况下,DeepSeekMath 7B 在竞赛级 MATH 基准测试中取得了 51.7% 的优异成绩,接近 Gemini-Ultra 和 GPT-4 的性能水平。通过
2025-05-29 20:30:00
1044
原创 ImportError: libblas.so.3: cannot open shared object file: No such file or directory
系统未安装该库或版本不匹配会导致导入失败。错误,需确保系统已安装 BLAS 库。PyTorch 依赖 BLAS 库进行矩阵运算,而。
2025-05-28 21:00:00
234
原创 git clone 提速
指定了 depth 1 的时候,就是只保留了最新的入口,这样自然快很多,代码也是完整的,缺点是历史入口没下载,切不到历史 commit。git上的项目时间久了。
2025-05-26 19:30:00
412
原创 BLIP3-o:一系列完全开源的统一多模态模型——架构、训练与数据集
在近期关于多模态模型的研究中,将图像理解与生成统一起来受到了越来越多的关注。尽管图像理解的设计选择已经得到了广泛研究,但对于具有图像生成功能的统一框架而言,其最优模型架构和训练方案仍有待进一步探索。鉴于自回归和扩散模型在高质量生成和可扩展性方面具有强大潜力,我们对它们在统一多模态环境中的使用进行了全面研究,重点关注图像表示、建模目标和训练策略。基于这些研究,我们提出了一种新方法,该方法采用扩散Transformer生成语义丰富的CLIP图像特征,这与传统的基于VAE的表示方法不同。
2025-05-24 16:06:23
1192
1
原创 大模型Pre-Training实战解析:实现Qwen3增量预训练
大模型一般分三个阶段(现在有很多个阶段的,比如DeepSeek),首先要完成的是Pre-Training阶段。预训练是指在大量无标签数据上进行训练,使模型学习到一些基础的语言表示和知识。常见的预训练方法包括自回归语言模型(如GPT系列)、自编码器等。这些方法通过在大规模语料库上训练,使模型能够理解语言的语法、语义和上下文信息。这篇文章试图告诉大家如何去实现增量Pre-Training。
2025-05-22 20:26:10
738
原创 RuntimeError: Cannot find sufficient samples, consider increasing dataset size.
在使用LLaMA-Factory做增量PT预训练的时候,出现了上面的错误,原因是截断太大了,需要设置的小一些,如下图:
2025-05-21 18:44:26
212
原创 用于红外小目标检测的风车形卷积与基于尺度的动态损失函数
近年来,基于卷积神经网络(CNN)的红外小目标检测方法取得了卓越的性能。然而,这些方法通常采用标准卷积,忽略了红外小目标像素分布的空间特性。因此,我们提出了一种新型的风车形卷积(PConv)来替代骨干网络下层的标准卷积。PConv 更好地契合了微弱小目标像素的高斯空间分布,增强了特征提取能力,显著增大了感受野,并且参数增加量极少。此外,虽然最近的损失函数结合了尺度损失和位置损失,但它们没有充分考虑这些损失在不同目标尺度下的敏感性差异,这限制了在微弱小目标上的检测性能。
2025-05-20 05:15:00
1562
原创 LSNet:见大观小
论文链接:https://arxiv.org/pdf/2503.23135视觉网络设计,包括卷积神经网络(Convolutional Neural Networks,CNNs)和视觉Transformer(Vision Transformers,ViTs),显著推动了计算机视觉领域的发展。然而,它们复杂的计算给实际应用部署带来了挑战,尤其是在实时应用中。为解决这一问题,研究人员探索了各种轻量级且高效的网络设计。不过,现有的轻量级模型主要依赖自注意力机制和卷积进行令牌混合(token mixing)。
2025-05-19 15:24:24
1084
原创 OverLoCK实战:使用OverLoCK实现图像分类任务(二)
本文介绍了如何使用OverLoCK框架进行图像分类任务的训练和测试。首先,通过导入必要的库文件,并设置多GPU训练的环境变量。接着,通过设置随机种子确保实验的可重复性。随后,定义了训练过程中的全局参数,包括学习率、批次大小、训练轮数等,并创建了保存模型的文件夹。文中还详细解释了参数的含义及其对训练的影响,如EMA(指数移动平均)的使用及其衰减率的作用。最后,介绍了图像预处理和数据增强的步骤,包括随机旋转、高斯模糊、颜色抖动等操作,以确保模型的鲁棒性。通过这些步骤,用户可以有效地训练和测试图像分类模型。
2025-05-19 07:15:29
1349
原创 计算机网络-同等学力计算机综合真题及答案
计算机网络-同等学力计算机综合真题及答案2003 年网络第二部分 计算机网络(共 30 分)(因大纲变动因此 2004 年真题仅附真题,不作解析。一、填空题(共 10 分)1 、(1 分)使用 10Mb/s 以太网,已知集线器的端口数为 N,共享媒体集线器的总量为 10Mb/s;交换式以太网 的总容量为 (N*10)Mb/s。2 、(1 分)使用覆盖模型将 ATM与 IP 结合起来,模型中把 ATM看成 数据链路层 层协议,在它上面运行 IP 协议。
2025-05-03 20:14:48
1505
1
原创 软件工程国考
关系类型强度生命周期依赖UML符号示例泛化强继承关系空心三角箭头动物 → 猫关联中无实线学生 ↔ 课程聚合弱整体部分独立空心菱形 + 实线学校 ◇─ 教师组合强整体部分依赖实心菱形 + 实线公司 ◆─ 部门依赖弱临时使用虚线箭头订单 ╌╌> 支付服务S 答:(1)分支覆盖又称判定覆盖:使得程序中每个判断的取真分支和取假分支至少经历一次,即判断的真假均曾被满足。
2025-05-01 21:40:04
1061
4
原创 Qwen3:思深,行速
今天,我们宣布推出 Qwen3,这是 Qwen 系列大型语言模型的最新成员。我们的旗舰模型 Qwen3-235B-A22B 在代码、数学、通用能力等基准测试中,与 DeepSeek-R1、o1、o3-mini、Grok-3 和 Gemini-2.5-Pro 等顶级模型相比,表现出极具竞争力的结果。此外,小型 MoE 模型 Qwen3-30B-A3B 的激活参数数量是 QwQ-32B 的 10%,表现更胜一筹,甚至像 Qwen3-4B 这样的小模型也能匹敌 Qwen2.5-72B-Instruct 的性能。
2025-04-29 05:52:52
1300
原创 python 线程池顺序执行
根据需求选择最合适的方法,通常方案二(顺序获取结果)能满足大多数场景。方案一:强制单线程(伪顺序执行)在Python中,线程池(方案二:按提交顺序获取结果。方案三:任务间依赖控制。方案四:队列顺序消费。
2025-04-28 21:00:00
258
原创 英伟达最新AI「描述一切」模型:细节捕捉狂魔,连奶牛臀部斑块都能精准捕捉!
例如,当模型试图放大观察图像中的咖啡杯时,可能丢失杯身花纹或忽略其所在的环境(如户外咖啡桌)。DAM的诞生,正是为了解决这些痛点。它像一把「智能放大镜」,用户只需框选、点触或涂鸦指定区域,即可生成细腻到纹理、动作甚至神态的描述,还能根据需求调整描述的详略风格。这种设计让DAM的「观察力」远超传统模型:即使是图像边缘的微小物体(如窗台上的猫),它也能细致到「毛发柔软、耳朵微倾、阳光下眼睛呈琥珀色」。,仅3B参数却以「细节狂魔」的姿态碾压GPT-4o,成为首个能精准描述图像或视频中任意区域的AI神器。
2025-04-27 20:45:00
841
原创 继百度接⼊DeepSeek,搜索开放平台也来了,流量薅起来!
#百度搜索开放平台 #百度AI开放计划 #mcp #mcpserver#create2025 #AI当AI应用如雨后春笋般涌现,开发者们却面临一个共同困境:“酒香也怕巷子深”。即便产品再创新,若无法触达用户,一切努力终将归零。而百度搜索最新推出的AI开放计划,正试图用“开放”二字撕开流量困局,为开发者铺就一条从技术到商业的“高速公路”。AI应⽤爆发时代,智能体、H5、⼩程序、APP等各种AI应⽤形态层出不穷,,但开发者们的焦虑却愈发明显:如何快速找到这些应⽤,如何发现和匹配最合适的应⽤来满⾜⽤户个性化的需
2025-04-25 18:13:44
1121
1
原创 2023 国考
最长链____,最长链个数____,最长反链长度______,极大元个数____,极小元个数____,最小元为____,最大元为____。答案:1000/3 = 333,1000/5 = 200,1000/3*5 = 66,333+200-66=467。C. 若已所谷,则施于人 D. 凡是施于人的都应该是已所欲。A. 只有已所欲,才能施于人 B. 除非已所欲,否则不施于人。,则 $P(A) \cap P(B) = $ ( )已所不欲,勿施于人,不是逻辑推论( )的正整数角的个数 ( )
2025-04-24 20:45:00
685
原创 2021 国考
设:则“任何计算设备都可以求解某个问题”可以表达为:∀x(C(x)→∃y(P(y)∧S(x,y)))\forall x (C(x) \rightarrow \exists y (P(y) \land S(x, y)))∀x(C(x)→∃y(P(y)∧S(x,y)))解释:集合 ( A = {1, 2, 3, 4} ) 上的等价关系数目等于其不同划分方式的数量,即贝尔数 ( B_4 )。通过斯特林数(第二类)计算如下:斯特林数分解:贝尔数计算:B4=S(4,1)+S(4,2)+S(4,3)+S(4,4)
2025-04-22 20:07:39
869
原创 2024年国考
∀xPx→Qx(所有参加奥运会的运动员 ( x ) 必须获得资格)∃xPx∧¬Ax∀xPx→Qx∧∃yPy∧¬Ay二,选择题(10 分)
2025-04-19 18:46:10
1190
1
原创 2013 年同等学力人员申请硕士学位 学科综合水平全国统一考试 计算机科学与技术试卷
令 D(G)=\frac{1}{|V|} \sum_{v \in V} d(v) ,则用 D(G) 和 |V| 把 |E| 表示出来的表达式是 \qquad。对任意的 a, b \in Q ,定义二元运算 a \Delta b=(a \times b) / 2 ,则 Q 关于运算 \Delta 的单位元是 \qquad ,其中" \times "是有理数中通常的乘法运算。三,计算题(第 1 小题 3 分,第 2 小题 4 分,第 3 小题 6 分,共 13 分)
2025-04-19 07:14:35
290
原创 2019年计算机真题
等价关系的有序对个数每个划分块内的元素形成完全连接的等价类。{1,2}: (2^2 = 4) 个{3,4,5}: (3^2 = 9) 个{6,7}: (2^2 = 4) 个总计:(4 + 9 + 4 = 17)整除关系的有序对个数1整除所有数:(7) 对(包括自反)2整除2、4、6:(3) 对3整除3、6:(2) 对4、5、6、7仅自反:各(1) 对总计:(7 + 3 + 2 + 1 + 1 + 1 + 1 = 16)既对称又反对称的关系数目。
2025-04-12 18:22:55
602
原创 【Block总结】DRDB,空洞残差密集块|即插即用
本文提出了一种深度信息辅助的双任务协作去雾框架,通过差异感知机制和交替优化策略,实现了去雾与深度估计的相互促进。实验表明,该方法在合成和真实数据上均达到先进水平,为单幅图像去雾提供了新思路。未来可探索更轻量化的网络设计及跨任务泛化能力。
2025-04-08 06:58:23
901
1
原创 Meta Llama 4炸场!开源MoE模型登顶全球榜,单卡跑1000万token,价格打骨折
MoE架构革命:用20%算力干100%的活Llama 4首次引入MoE架构,每个token仅激活部分专家模块。例如Maverick的4000亿参数中,实际调用仅170亿,却能实现单卡运行的惊人效率。这种设计让模型像“智能路由器”,根据任务自动调度专家——写诗找文学专家,解方程找数学专家。
2025-04-07 19:00:00
902
原创 【Block总结】ENLTransformerBlock,高效非局部变换器块|即插即用
Perspective+ Unet 通过引入双路径编码策略、高效非局部变换器模块和跨尺度空间集成器,显著提升了医学图像分割的性能。该模型在局部细节和全局上下文的融合上表现出色,适用于需要高精度分割的复杂医学图像处理任务。
2025-04-06 08:24:53
507
原创 【Block总结】频域自适应空洞卷积FADC,即插即用
本论文提出了一种新的卷积方法——频率自适应空洞卷积(Frequency-Adaptive Dilated Convolution, FADC),旨在通过动态调整空洞率以适应输入数据的频率特性,从而克服传统固定空洞率卷积在频率响应方面的局限性。该方法在语义分割和目标检测任务中表现出显著的性能提升。
2025-04-06 04:00:00
842
原创 【Block总结】PlainUSR的局部注意力,即插即用|ACCV2024
这些创新点旨在解决现有方法在实时性能和计算效率上的瓶颈,同时保持竞争性的图像重建质量。局部注意力机制通过引入区域重要性图和门控机制,能够在局部范围内实现高阶信息交互。这种设计使得模型能够更有效地捕捉局部细节,同时避免了传统全局注意力机制可能带来的高计算成本[4][5][6]。局部注意力机制的设计重点在于减少计算复杂度。相比全局注意力,局部注意力将加权求和的范围限制在特定窗口内,从而显著降低了计算量。这种方法特别适合实时超分辨率任务,能够在保持性能的同时实现低延迟[3][4][5]。
2025-04-05 22:06:44
588
Vim实战:使用Vim实现图像分类任务
2024-01-30
Hiera-MAE-Demo.zip
2024-03-05
EfficientVMamba实战:使用 EfficientVMamba实现图像分类任务
2024-04-02
YoloV8改进策略:CoordConv给卷积加上坐标,从而使其具备了空间感知能力.zip
2024-02-21
MogaNet实战:使用MogaNet实现图像分类任务
2024-02-12
YoloV8改进-三元注意力,小参数大能力,即插即用,涨点自如
2024-02-05
FlashInternImage实战:使用FlashInternImage实现图像分类任务
2024-01-27
UniRepLKNet实战:使用UniRepLKNet实现图像分类任务
2024-01-13
TransXNet实战:使用TransXNet实现图像分类任务
2023-12-19
Hiera实战:使用Hiera实现图像分类任务
2023-12-07
RevCol实战:使用RevCol实现图像分类任务
2023-11-25
FastVIT实战:使用FastVIT实现图像分类
2023-08-21
VGGNet剪枝实战:使用VGGNet训练、稀疏训练、剪枝、微调等,剪枝出只有3M的模型
2023-08-07
OverLoCK实战:使用OverLoCK实现图像分类任务
2025-05-19
SparX实战:使用SparX实现图像分类任务
2025-01-29
DFFormer实战:使用DFFormer实现图像分类
2025-01-27
CrossFormer实战:使用CrossFormer实现图像分类任务
2025-01-12
DilateFormer实战:使用DilateFormer实现图像分类任务
2024-12-26
VOLO实战:使用VOLO实现图像分类任务
2024-11-25
DeBiFormer实战:使用DeBiFormer实现图像分类任务
2024-11-07
EfficientFormer实战:使用EfficientFormerV2实现图像分类任务
2024-09-19
GCViT实战:使用GCViT实现图像分类任务
2024-09-02
CAS-ViT实战:使用CAS-ViT实现图像分类任务
2024-08-22
GroupMamba实战:使用GroupMamba实现图像分类任务
2024-07-31
EfficientMod实战:使用EfficientMod实现图像分类任务
2024-07-20
RDNet实战:使用RDNet实现图像分类任务
2024-07-09
YoloV8改进策略-注意力篇-Block改进-附结构图-自研基于xLSTM的注意力
2024-07-01
StarNet实战:使用StarNet实现图像分类任务
2024-06-17
Vision-LSTM(ViL)实战:使用Vision-LSTM(ViL)实现图像分类任务
2024-06-11
MobileNetV4实战:使用MobileNetV4实现图像分类任务
2024-06-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人