Dubbo负载均衡
1.什么是负载均衡?
负载均衡改善了跨多个计算资源(例如计算机,计算机集群,网络链接,中央处理单元或磁盘驱动)的工作负载分布。负载平衡旨在优化资源使用,最大化吞吐量,最小化响应时间,并避免任何单个资源的过载。使用具有负载平衡而不是单个组件的多个组件可以通过冗余提高可靠性和可用性。负载平衡通常涉及专用软件或硬件。
在实际项目中,一个服务基本都是集群模式的,也就是多个功能相同的项目在运行,这样才能承受更高的并发
这时一个请求到这个服务,就需要确定访问哪一个服务器
Dubbo框架内部支持负载均衡算法,能够尽可能的让请求在相对空闲的服务器上运行
在不同的项目中,可能选用不同的负载均衡策略,以达到最好效果
Loadbalance:就是负载均衡的意思
2.Dubbo内置负载均衡策略算法
Dubbo内置4种负载均衡算法
- random loadbalance:随机分配策略(默认)
- round Robin Loadbalance:权重平均分配
- leastactive Loadbalance:活跃度自动感知分配
- consistanthash Loadbalance:一致性hash算法分配
实际运行过程中,每个服务器性能不同
在负载均衡时,都会有性能权重,这些策略算法都考虑权重问题
1.随机分配策略
假设我们当前3台服务器,经过测试它们的性能权重比值为5:3:1
下面可以生成一个权重模型
随机生成随机数
在哪个范围内让哪个服务器运行
优点:
算法简单,效率高,长时间运行下,任务分配比例准确
缺点:
偶然性高,如果连续的几个随机请求发送到性能弱的服务器,会导致异常甚至宕机
2.权重平滑分配
如果几个服务器权重一致,那么就是依次运行
但是服务器的性能权重一致的可能性很小
所以我们需要权重平滑分配
一个优秀的权重分配算法,应该是让每个服务器都有机会运行的
如果一个集群服务器性能比为5:3:1
1>A 2>A 3>A 4>A 5>A 6>B 7>B 8>B 9>C
10>A
上面的安排中,连续请求一个服务器肯定是不好的,我们希望所有的服务器都能够穿插在一起运行
Dubbo2.7之后更新了这个算法使用"平滑加权算法"优化权重平均分配策略
优点:
能够尽可能的在权重要求的情况下,实现请求的穿插运行(交替运行),不会发生随机策略中的偶发情况
缺点:
服务器较多时,可能需要减权和复权的计算,需要消耗系统资源
3.活跃度自动感知
记录每个服务器处理一次请求的时间
按照时间比例来分配任务数,运行一次需要时间多的分配的请求数较少
4.一致性Hash算法
根据请求的参数进行hash运算
以后每次相同参数的请求都会访问固定服务器
因为根据参数选择服务器,不能平均分配到每台服务器上
使用的也不多