一堆很厉害的变换,无厘头,看一下他们的物理含义就会变得很有意思。
主要是从一维的角度看,二维的太复杂。
傅立叶变换
F
(
w
)
=
∫
−
∞
+
∞
f
(
t
)
e
−
j
w
t
d
t
F(w) = \int_{-\infty}^{+\infty}f(t)e^{-jwt}dt
F(w)=∫−∞+∞f(t)e−jwtdt
但是对于有些函数不收敛,然后就不能进行Fourier变换,然后给这个函数乘上一个衰减因子
f
(
t
)
e
−
σ
t
f(t)e^{-\sigma t}
f(t)e−σt,让这个函数能够收敛,然后再对它进行傅立叶变换得到
F
(
w
)
=
∫
−
∞
+
∞
f
(
t
)
e
−
σ
t
e
−
j
w
t
d
t
F(w) = \int_{-\infty}^{+\infty}f(t)e^{-\sigma t}e^{-jwt}dt
F(w)=∫−∞+∞f(t)e−σte−jwtdt
令
s
=
σ
+
w
j
s = \sigma + wj
s=σ+wj就得到laplace变换
拉普拉斯变换
L
(
s
)
=
∫
−
∞
+
∞
f
(
t
)
e
−
s
t
L(s) = \int_{-\infty}^{+\infty}f(t)e^{-st}
L(s)=∫−∞+∞f(t)e−st
离散的Laplace变换为
X
s
(
s
)
=
∑
n
=
0
+
∞
x
(
n
T
)
e
−
s
n
t
X_s(s) = \sum_{n=0}^{+\infty}x(nT)e^{-snt}
Xs(s)=n=0∑+∞x(nT)e−snt
然后令
Z
=
e
s
t
Z = e^{st}
Z=est就得到Z变换
Z变换
X ( z ) = ∑ n = 0 + ∞ x ( n T ) z − n X(z) = \sum_{n=0}^{+\infty}x(nT)z^{-n} X(z)=n=0∑+∞x(nT)z−n
小波变换
由于傅立叶变换不能体现信号与时间的关系,就引出了小波变换,小波变换我有一个章节专门有讲述。