Fourier&Laplace&z&wavelet

一堆很厉害的变换,无厘头,看一下他们的物理含义就会变得很有意思。
主要是从一维的角度看,二维的太复杂。

傅立叶变换

F ( w ) = ∫ − ∞ + ∞ f ( t ) e − j w t d t F(w) = \int_{-\infty}^{+\infty}f(t)e^{-jwt}dt F(w)=+f(t)ejwtdt
但是对于有些函数不收敛,然后就不能进行Fourier变换,然后给这个函数乘上一个衰减因子 f ( t ) e − σ t f(t)e^{-\sigma t} f(t)eσt,让这个函数能够收敛,然后再对它进行傅立叶变换得到
F ( w ) = ∫ − ∞ + ∞ f ( t ) e − σ t e − j w t d t F(w) = \int_{-\infty}^{+\infty}f(t)e^{-\sigma t}e^{-jwt}dt F(w)=+f(t)eσtejwtdt
s = σ + w j s = \sigma + wj s=σ+wj就得到laplace变换

拉普拉斯变换

L ( s ) = ∫ − ∞ + ∞ f ( t ) e − s t L(s) = \int_{-\infty}^{+\infty}f(t)e^{-st} L(s)=+f(t)est
离散的Laplace变换为
X s ( s ) = ∑ n = 0 + ∞ x ( n T ) e − s n t X_s(s) = \sum_{n=0}^{+\infty}x(nT)e^{-snt} Xs(s)=n=0+x(nT)esnt
然后令 Z = e s t Z = e^{st} Z=est就得到Z变换

Z变换

X ( z ) = ∑ n = 0 + ∞ x ( n T ) z − n X(z) = \sum_{n=0}^{+\infty}x(nT)z^{-n} X(z)=n=0+x(nT)zn

小波变换

由于傅立叶变换不能体现信号与时间的关系,就引出了小波变换,小波变换我有一个章节专门有讲述。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值