Windows Server 2012 Server Backup之数据备份与恢复详解

本文详细介绍了WindowsServerBackup的功能、安装步骤、文件备份与还原,包括一次性备份、备份计划、系统备份和系统还原,以及其在成本节省方面的优势。尽管功能相对第三方软件有所限制,但对于基本备份需求的企业来说,它是一个经济实用的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Windows Server Backup是系统自带的备份和恢复组件,和Windows Server 2003中的NTbackup类似。相对于其他第三方备份软件,Windows Server Backup由于是系统自带组件,不需要额外购买授权,从而减少IT开支

目录

宝塔服务器面板,一键全能部署及管理,送你10850元礼包,点我领取

Windws Server 2012 Server Backup详解

一、Windows Server Backup介绍

      Windows Server Backup是系统自带的备份和恢复组件,和Windows Server 2003中的NTbackup类似。相对于其他第三方备份软件,Windows Server Backup由于是系统自带组件,不需要额外购买授权,从而减少IT开支。注意:Windows Server Backup不支持备份到磁带。

      Windows Server Backup可以备份一个完整的服务器(所有卷),所选卷,系统状态,或特定的文件或文件夹,并创建一个备份,您可以使用裸机恢复。您可以恢复卷,文件夹,文件,某些应用程序和系统状态。而且,硬盘故障等灾害的情况下,您可以执行裸机恢复。

      Windows Server 2012 中 Windows Server Backup功能更新:

      1.从Hyper-V主机备份和恢复单个虚拟机

      2.备份版本功能改进

      3.支持大于2TB的卷备份和4K扇区支持

      4.支持备份群集共享卷(CSV)

二、Windows Server Backup安装。

1.实验环境

Windws Server 2012 Server Backup详解_Backup

2.在Labsvr02中,打开服务器管理器,点击“添加角色和功能”。

Windws Server 2012 Server Backup详解_Backup_02

3.在向导中,连续点4次“下一步”,在功能页面勾选“Windows Server Backup”,然后点“下一步”进行安装即可完成安装。

Windws Server 2012 Server Backup详解_Backup_03

三、文件的备份

一次性备份

1.打开Windows Server Backup,右击“本地备份”后选择“一次性备份”。在打开的向导中直接"下一步".由于是一次性的备份,所以计划的备份时不可选的。

Windws Server 2012 Server Backup详解_Backup_04

Windws Server 2012 Server Backup详解_Backup_05

2.我们只需对特定的文件进行备份,选择“自定义”。如果选择整个服务器,将备份所有服务器数据。

Windws Server 2012 Server Backup详解_Backup_06

3.点击“添加项目”,选择需要备份的文件。点击“高级设置”还可以添加排除,排除一些无需备份的文件类型,如:mp3和视频文件等。

Windws Server 2012 Server Backup详解_Backup_07

Windws Server 2012 Server Backup详解_Backup_08

4.选择备份文件存放路径。可以选择本地存储或远程共享文件夹,不支持磁带驱动器。

需要注意:

   本地驱动器:必须是NTFS格式的驱动器,不能将备份存储在USB闪存驱动器。容量至少是备份文件大小的1.5倍,才能存储几个备份版本。

   远程共享文件夹:每次创建新的备份时都将覆盖旧的备份,如果需要存储多备份版本的话,请不要选择此项。同时,在已包含备份的共享文件夹创建备份时,如果备份过程失败,则可能会丢失所有备份。

Windws Server 2012 Server Backup详解_Backup_09

5.选择备份存储目标。注意:无法选择需要备份文件所在的分区,强烈建议生产环境不要选择系统盘作为备份目标。由于实验机器上只有C、D两个分区,所以只能选C盘。

Windws Server 2012 Server Backup详解_Backup_10

Windws Server 2012 Server Backup详解_Backup_11

6.备份完成好可以在备份目标看到相应的备份文件。

Windws Server 2012 Server Backup详解_Backup_12

备份计划(自动备份)

1.在Windows Server Backup控制台,右击“本地备份”,选择“备份计划”。

Windws Server 2012 Server Backup详解_Backup_13

2.选择需要备份的文件。

Windws Server 2012 Server Backup详解_Backup_14

3.点击“添加项目”,选择需要备份的文件。点击“高级设置”还可以添加排除,排除一些无需备份的文件类型,如:mp3和视频文件等。

Windws Server 2012 Server Backup详解_Backup_15

Windws Server 2012 Server Backup详解_Backup_16

4.根据需求选择备份开始时间及备份频率。

Windws Server 2012 Server Backup详解_Backup_17

5.参考各个选项的说明,根据企业环境选择相应的存储。这里作为演示选择“备份到卷”(生产环境,请慎重选择此项,卷的性能会降低)

Windws Server 2012 Server Backup详解_Backup_18

6.添加相应的分区作为目标卷。

Windws Server 2012 Server Backup详解_Backup_19

Windws Server 2012 Server Backup详解_Backup_20

8.如需修改备份计划选择右侧的“备份计划”,则可以在向导中修改或停止该计划备份。

Windws Server 2012 Server Backup详解_Backup_21

9.如需在计划时间之外,进行手动备份,则再次在控制台右侧选择“一次性备份”,然后选择“计划备份选项”。

Windws Server 2012 Server Backup详解_Backup_22

Windws Server 2012 Server Backup详解_Backup_23

1、打开任务计划,在任务计划程序(本地)-任务计划程序库 –Microsoft-Windows-Backup中可以看到设置的备份计划。
2、右键备份任务计划,选“属性”—触发器—选“编辑”,可以在编辑触发器界面,更改备份周期,现更改为每周,星期日21:00:00开始备份。

四、还原文件

1.为了演示还原是否成功,将部分文件删除。

Windws Server 2012 Server Backup详解_Backup_24

2.在控制台右侧,选择“恢复”。

Windws Server 2012 Server Backup详解_Backup_25

3.由于前面备份的文件就存储在本地磁盘,所以选择的“此服务器”。

Windws Server 2012 Server Backup详解_Backup_26

4.选择需要恢复哪天的备份,然后选择需要恢复的类型。

Windws Server 2012 Server Backup详解_Backup_27

Windws Server 2012 Server Backup详解_Backup_28

5.选择要还原的文件,无法选择单个文件,只能选择目录。作为演示选择备份的跟目录,还原所有文件。

Windws Server 2012 Server Backup详解_Backup_29

6.选择恢复到目标位置,如果选择其他位置,输入对应路径即可。有相同文件时是否需要覆盖以及是否需要连权限一起恢复。

Windws Server 2012 Server Backup详解_Backup_30

7.确认恢复项目,点击“恢复”。

Windws Server 2012 Server Backup详解_Backup_31

8.回到恢复目录,可以看到前面删除的文件已经成功恢复。

Windws Server 2012 Server Backup详解_Backup_32

总结:Windows Server Backup 虽然在功能上可能和一些第三方备份软件有差距,但还是能够满意企业的基本备份需求,也可以减少IT费用的投入。Windows Server Backup 只支持完整备份和增量备份,不支持差异备份。

五、备份和还原操作系统

系统备份

1.打开Windows Server Backup,右击“本地备份”,作为演示,选择“一次性备份”。

Windws Server 2012 Server Backup详解_Backup_33

Windws Server 2012 Server Backup详解_Backup_34

Windws Server 2012 Server Backup详解_Backup_35

2.选择“裸机恢复”,将备份系统状态、系统保留和系统分区。

Windws Server 2012 Server Backup详解_Backup_36

3.由于后面需要演示这台服务器由于故障,用系统备份进行还原。选择远程共享文件夹。

Windws Server 2012 Server Backup详解_Backup_37

4.输入在Labsvr03上创建的共享UNC路径:\\labsvr03\backup(需要确保能够访问并对该文件夹有写入权限,否则会备份失败)。是否继承该共享文件夹的权限,如果选择“不继承”则需要输入相应的用户凭据。最后点“备份”,等待备份完成。

Windws Server 2012 Server Backup详解_Backup_38

Windws Server 2012 Server Backup详解_Backup_39

系统还原

1.为了演示,现假设Labsvr02这台服务器由于故障,无法启动,进行裸机恢复。在该服务器上插入Windows Server 2012的安装盘,并选择从光盘启动。依次选择“修复计算机”—>“疑难解答”—>”系统映象恢复”—>”Windows Server 2012”

Windws Server 2012 Server Backup详解_Backup_40

Windws Server 2012 Server Backup详解_Backup_41

Windws Server 2012 Server Backup详解_Backup_42

2.由于备份文件存在其他服务器上,所以选择“取消”

Windws Server 2012 Server Backup详解_Backup_43

Windws Server 2012 Server Backup详解_Backup_44

3.选择“在网络上搜索系统映像”。

Windws Server 2012 Server Backup详解_Backup_45

Windws Server 2012 Server Backup详解_Backup_46

4.输入网络文件夹路径:\\labsvr03\backup ,并输入有权限该文件夹的用户凭据。

Windws Server 2012 Server Backup详解_Backup_47

Windws Server 2012 Server Backup详解_Backup_48

6.选择搜索到的映像,然后“下一步”。

Windws Server 2012 Server Backup详解_Backup_49

Windws Server 2012 Server Backup详解_Backup_50

7.如果其他分区有重要数据,请勿勾选“格式化并重新分区磁盘”,最后点击“完成”即可开始对系统进行恢复。

Windws Server 2012 Server Backup详解_Backup_51

Windws Server 2012 Server Backup详解_Backup_52

至此已经完成对系统的恢复。

总结:Windows Server Backup 虽然在功能上可能和一些第三方备份软件有差距,但还是能够满意企业的基本备份需求,也可以减少IT费用的投入。Windows Server Backup 只支持完整备份和增量备份,不支持差异备份。

<think>好的,我现在要比较Batch Normalization(BN)和Layer Normalization(LN)的区别、适用场景以及在深度学习中的对比。首先,我需要回忆这两种标准化方法的基本概念和原理。 Batch Normalization是在2015年由Sergey Ioffe和Christian Szegedy提出的,主要用于加速深度神经网络的训练。它的核心思想是对每个小批量(mini-batch)的数据进行标准化处理,即对每个神经元的输入进行归一化,使其均值接近0,方差接近1。这样可以减少内部协变量偏移(Internal Covariate Shift),从而加快训练速度,并允许使用更高的学习率。BN通常在卷积神经网络(CNN)中应用广泛,特别是在图像处理任务中,比如ResNet等模型就大量使用了BN层[^1]。不过,BN的一个缺点是当batch size较小时,效果会变差,因为均值和方差的估计不准确。比如,在训练TurboAE时,需要非常大的batch size(超过500)才能有效平均噪声影响。 接下来是Layer Normalization,由Jimmy Lei Ba等人在2016年提出。BN不同,LN是对同一层内所有神经元的输出进行标准化,即对每个样本的所有特征进行归一化。这种方法不依赖于batch size的大小,因此在batch size较小或动态变化的情况下表现更好。LN在循环神经网络(RNN)和Transformer模型中应用较多,比如在自然语言处理任务中,由于序列长度可变,使用LN可以更好地处理不同长度的输入。例如,DeepDR-Transformer模块在处理眼底图像分类任务时,可能使用了类似LN的结构来保持稳定性[^2]。 两者的主要区别在于归一化的维度不同。BN在batch维度和特征维度上进行归一化,而LN是在特征维度和层维度上进行。因此,BN的效果受batch size影响较大,而LN则不受此限制。此外,BN在训练和推理时的行为不同,需要维护移动平均的均值和方差,而LN在训练和推理时计算方式一致,不需要额外参数。 适用场景方面,BN适合固定深度的模型和较大的batch size,比如图像分类任务中的CNN。LN则适合变长序列或小batch size的情况,如NLP中的Transformer或RNN。此外,在强化学习或生成对抗网络(GAN)中,由于batch size可能不稳定,LN也更适合。 需要进一步验证的是,LN是否真的在Transformer中被广泛使用,以及BN在batch size较小时的具体表现。根据引用[1],TurboAE需要大batch size才能有效,这说明BN对batch size敏感,而LN可能更适合小batch场景。同时,引用[2]提到的DeepDR-Transformer使用了全局平均池化和全连接层,可能未明确提到LN,但Transformer架构通常使用LN,如原始论文中的设计。 总结下来,BN和LN的主要区别在于归一化的维度和对batch size的依赖,适用场景则根据模型类型和任务需求来选择。</think>### Batch Normalization vs Layer Normalization: 区别适用场景 #### 1. **核心区别** - **Batch Normalization (BN)** 对每个神经元的输入按 **批次维度** 进行标准化。假设输入维度为 $[B, C, H, W]$(如CNN中的图像数据),BN会对每个通道(Channel)的所有样本、空间位置计算均值和方差,公式为: $$ \mu_c = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W x_{b,c,h,w} \\ \sigma_c^2 = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W (x_{b,c,h,w} - \mu_c)^2 $$ 适用于 **固定输入结构** 的任务(如图像分类)。 - **Layer Normalization (LN)** 对每个样本的所有神经元输出按 **特征维度** 进行标准化。假设输入维度为 $[B, L, D]$(如Transformer中的序列数据),LN会对每个样本的所有位置和特征计算均值和方差: $$ \mu_b = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D x_{b,l,d} \\ \sigma_b^2 = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D (x_{b,l,d} - \mu_b)^2 $$ 适用于 **变长序列** 或 **小批量数据** 的场景(如NLP、强化学习)。 --- #### 2. **适用场景对比** | **特性** | **Batch Normalization** | **Layer Normalization** | |------------------------|--------------------------------------|--------------------------------------| | **数据依赖** | 依赖批次统计,需要较大batch size | 单样本统计,batch size无关 | | **任务类型** | 图像处理(CNN)、固定输入长度的任务 | NLP(Transformer)、RNN、强化学习 | | **训练稳定性** | 对batch size敏感,小批次效果下降 | 对batch size鲁棒 | | **推理行为** | 使用移动平均统计量 | 直接计算当前样本统计量 | --- #### 3. **性能影响** - **BN的优势局限** 在图像任务中显著加速收敛,但受限于batch size。例如,在TurboAE训练中,batch size需大于500才能有效平均噪声影响。 - **LN的优势局限** 更适合动态输入或小batch场景。例如,Transformer通过LN处理变长序列,而DeepDR-Transformer在医学图像分类中可能依赖类似结构[^2]。 --- #### 4. **代码示例对比** ```python # Batch Normalization (PyTorch) import torch.nn as nn bn = nn.BatchNorm2d(num_features=64) # 用于CNN # Layer Normalization (PyTorch) ln = nn.LayerNorm(normalized_shape=512) # 用于Transformer ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值