文章比较长,建议点击左上角的收听按钮,语音播放全文。
专业简介
以下是对经济统计学专业的通俗解释:
数据收集与整理方面
经济统计学就像是一个经济领域的数据侦探。它要从海量的经济活动信息中,找出有价值的数据。比如,到各个企业去收集它们的生产数量、销售额、成本等数据,还要从市场上收集商品价格的波动情况、消费者的购买行为等信息。把这些杂乱无章的数据进行分类整理,让它们变得有条理。
分析经济现象方面
这个专业就像一个经济“医生”,通过分析数据来诊断经济运行的“健康状况”。例如,通过统计居民收入和消费的数据,可以看出人们的生活水平是在提高还是降低;分析不同行业的投资数据,能知道哪些行业正在蓬勃发展,哪些行业可能遇到了困境。它能帮助我们理解为什么有时候物价会上涨,为什么有的地区经济增长快而有的地区慢。
提供决策依据方面
它相当于经济决策的“参谋”。政府在制定经济政策时,需要知道当前的经济结构、就业情况、通货膨胀水平等,经济统计学专业通过数据统计和分析,为政府提供这些信息,让政府知道应该采取什么样的财政政策、货币政策来促进经济稳定增长、降低失业率等。企业在决定生产多少产品、开拓哪些市场时,也需要依据经济统计数据来评估市场潜力和风险,从而做出更明智的决策。
预测经济趋势方面
经济统计学像是一个经济“预言家”。它利用过去和现在的数据,通过建立各种统计模型,尝试预测未来的经济走势。例如,预测明年的房价走势、股票市场的变化趋势、某类商品的需求变化等。这可以帮助投资者决定如何配置资产,也能帮助企业提前规划生产和经营策略。
本科
经济学
经济学类
专业代码
020102
修业年限
四年
授予学位
经济学学士
平均薪酬
¥11500
选科建议:
物理/物理+化学
考研方向:
金融学、统计学、经济学、会计学
主要课程
经济统计学是一个结合了经济学理论与统计学方法的专业,旨在培养具备经济分析能力和数据处理技能的人才。该专业的课程设置通常围绕经济理论、统计方法以及实际应用展开,下面列出的是一个较为典型的经济统计学专业课程体系,但请注意实际课程设置可能会根据学校的不同而有所差异:
一年级基础课程
微积分:掌握基本的微积分运算,为后续经济学和统计学的学习打下基础。
线性代数:学习矩阵运算、线性方程组求解等知识,是后续定量分析的基础。
概率论与数理统计:介绍概率的基本概念和统计推断的方法。
计算机基础:学习编程基础知识,常用软件的操作等。
二年级核心课程
微观经济学:研究个体经济行为和市场机制。
宏观经济学:探讨整体经济活动的规律和政策。
统计学原理:深入学习统计学的基本原理和方法。
计量经济学:学习如何运用统计方法来分析经济数据。
数据库原理:了解数据库的设计、管理和查询语言SQL。
三、四年级选修与专业课
抽样调查:学习如何通过样本估计总体特征。
经济预测与模拟:使用模型进行经济预测和模拟分析。
时间序列分析:分析时间序列数据的特征和趋势。
面板数据分析:研究横截面与时间维度相结合的数据。
经济计量模型:探讨更复杂的经济模型,如联立方程模型等。
金融统计学:专注于金融市场中的数据处理与分析。
大数据分析:利用现代计算技术处理海量数据。
Python/R编程:学习使用Python或R语言进行数据分析。
数据挖掘与机器学习:探索如何从数据中发现模式和知识。
社会经济统计:研究社会经济现象的统计分析方法。
国民经济核算:了解国民经济账户体系和核算方法。
统计软件应用:熟练掌握SPSS、Stata等统计软件的应用。
实践环节
实习实训:在校内外实习基地进行专业实习,积累实践经验。
毕业设计/论文:完成毕业设计或撰写毕业论文,综合运用所学知识解决实际问题。
以上仅为一个大致的课程框架,具体学校的课程设置可能会有所差异。此外,部分学校可能会安排一些通识教育课程,如外语、人文社科类课程等,以拓宽学生的知识面。
推荐书籍
对于经济统计学专业的学生,推荐以下课外书籍,这些书籍涵盖了经济统计学的基础理论、应用实践、数据分析及前沿研究等多个方面:
入门及基础类书籍
《统计学导论》:这是一本广泛使用的统计学入门教材,介绍了统计学的基本概念、方法和技巧,对于初学者来说是一个很好的起点,有助于理解统计学在经济分析中的应用。
《经济学原理》:作为经济学入门的经典教材,这本书也包含了经济统计学的基本概念和方法,有助于建立起对经济学和统计学的基础知识。
《概率论与数理统计》:由陈希孺等作者编写的书籍,是学习统计学不可或缺的基础教材,深入讲解了概率论与数理统计的基本原理和方法。
应用及实践类书籍
《商务与经济统计学》:由托马斯·威廉斯等人编著,详细介绍了商务与经济领域中统计学的应用,适合经济统计学专业的学生阅读。
《数据分析与决策模型》:这本书结合了统计学和经济理论,帮助读者理解和应用统计方法来解决实际问题,对于提升实践能力很有帮助。
《R语言实战》(第二版):对于想要掌握R语言进行数据分析的学生来说,这本书是不错的选择,通过丰富的案例和详细的步骤指导,帮助读者快速上手R语言数据分析。
前沿及研究类书籍
《高级统计学习方法》:由Trevor Hastie等人编写,介绍了统计学习领域的最新方法和研究成果,适合对经济统计学有深入研究兴趣的学生阅读。
《贝叶斯数据分析》:这本书由多位知名统计学家合著,深入探讨了贝叶斯统计学的理论和应用,对于理解现代统计学的前沿方向很有帮助。
《统计模型:理论与实践》:由David A. Freedman等人编写,结合了统计学的理论与实践,介绍了多种统计模型及其应用,适合对经济统计学研究有兴趣的学生阅读。
其他推荐书籍
《多元统计分析引论》:由张尧庭、方开泰编著,详细介绍了多元统计分析的基本原理和方法,适合有一定统计学基础的学生进一步深入学习。
《应用回归分析》(R语言版):由何晓群编著,结合R语言介绍了回归分析的应用和实践,对于提升数据分析能力很有帮助。
《数据挖掘导论》:虽然这本书主要面向数据挖掘领域,但其中也包含了很多与经济统计学相关的内容和方法,对于拓宽知识面很有帮助。
以上书籍仅供参考,学生可以根据自己的兴趣和需求选择合适的书籍进行阅读。同时,也可以结合在线课程、教学资源以及实践项目等方式,全面提升自己的经济统计学知识和技能。
名人
以下是经济统计学专业领域内的一些名人:
1. 国外名人
约翰·格朗特(John Graunt):
他是英国的统计学家,被视为近代统计学的先驱之一。其在1662年发表了《关于死亡表的自然观察与政治观察》,通过对伦敦人口死亡数据的研究,编制了世界上第一张生命表,为人口统计学的发展奠定了基础,对经济统计学中人口与劳动力相关研究有着重要的启示意义。
阿道夫·凯特勒(Adolphe Quetelet):
比利时统计学家、数学家和天文学家。他将概率论和数理统计方法引入社会科学研究,提出了“平均人”的概念,认为社会现象存在着一定的规律性,可以通过统计方法来揭示。他的研究成果为经济统计学提供了重要的理论和方法支持,使统计学在经济、社会等领域的应用得到了更广泛的推广。
2. 国内名人
钱伯海:
中国“国民经济学”和“国民经济统计学”等多门经济与统计新学科的奠基人,被称为“中国国民经济核算之父”。他提出的“国民经济核算平衡原则”被称为“钱氏定理”,对中国新国民经济核算体系的改革、建设和发展贡献卓著。
厉德寅:
中国计量经济学和数理统计学的开创者,是最早研究经济统计、经济计量方法的中国学者之一。其博士论文《相关理论的发展及其在经济统计学中的应用》是中国第一篇系统地阐明当代最新数理统计理论和方法及其在经济统计学中的应用的论文,是中国经济统计学的开篇之作,是中国经济学由定性分析走向定量分析的里程碑式的成果。
肖红叶:
天津财经大学教授,国务院学位委员会应用经济学科评议组成员,国家社科基金统计学科评委,原中国统计学会副会长、中国统计教育学会副会长、教育部高等教育经济学教学指导委员会委员。在经济统计学科的发展和专业建设方面有着深入的研究和丰富的见解,为中国经济统计学的教育和研究事业做出了重要贡献。
李金昌:
浙江财经大学原党委书记。在统计理论和方法研究方面成果丰硕,其研究成果对经济统计学的理论发展和实践应用具有重要的推动作用。他对新质生产力推动高质量发展的相关统计研究,为经济统计学在新时代经济发展中的应用提供了新的思路和方法。
毕业要求
经济统计学专业的毕业生应当具备以下几方面的能力,这些能力是他们在大学期间通过理论学习和实践锻炼所获得的:
数学和统计基础:
扎实的数学基础,包括但不限于微积分、线性代数、概率论与数理统计等。
掌握统计学的基本理论、基本知识和基本方法。
经济学理论:
理解并掌握微观经济学和宏观经济学的基本理论,以便能够运用统计方法进行经济分析。
统计软件应用:
熟练使用统计软件,如R、Python、Stata、SPSS等,能够进行数据处理和分析。
掌握计算机和信息技术应用,能够利用现代信息技术手段进行数据采集、处理和分析。
数据分析能力:
具备较强的数据分析能力,能够从大量数据中提取有用信息,进行统计推断和预测。
能够应用统计学理论分析、解决经济问题,并具有初步的应用统计学理论分析解决实际问题的能力。
写作和沟通能力:
能够清晰地撰写统计报告和分析结果。
能够有效地将复杂的统计分析结果传达给非专业人士。
具备良好的写作能力、语言表达能力、人际沟通和跨文化交流能力。
学习能力和适应性:
具备持续学习的能力,以适应不断变化的技术和方法。
具备较强的学习能力,能够快速掌握新知识,适应新环境。
专业素养:
掌握经济统计学基础理论、基础知识和概率论与数理统计基本理论和方法。
了解与社会经济统计有关的自然科学、社会科学、工程技术某一领域的基本知识。
法律法规知识:
熟悉国家经济建设和经济改革等方面的基本方针、政策和法律。
创新能力:
具备良好的创新意识和开拓精神,能够在工作中尝试新的思路和方法。
职业道德:
具备较高的职业道德水平,尊重数据的真实性,不篡改数据,遵守统计职业道德规范。
这些能力是经济统计学专业学生在学习过程中应注重培养的,只有将理论学习与实践能力结合起来,才能提升自己的综合能力和竞争力。同时,随着技术进步和社会发展,经济统计学专业的毕业生还需要不断提升自我,以适应行业的需求变化。
就业去向
经济统计学专业毕业生具有广泛的就业去向,主要可以归纳为以下几个方向:
1. 政府部门和事业单位
就业领域:经济统计学专业的毕业生在政府部门和事业单位中可以从事数据分析、政策研究、经济预测等方面的工作。例如,可以进入国家统计局、财政部、商务部等政府机构,或成为经济顾问、政策研究员等。
岗位示例:数据分析师、政策研究员、经济顾问等。
2. 金融机构
就业领域:银行、证券公司、保险公司等金融机构对经济统计学专业人才的需求旺盛。毕业生可以在这些机构中从事数据分析、风险管理、投资管理等工作。
岗位示例:数据分析师、风险管理师、投资分析师、精算师等。
3. 企事业单位
就业领域:各类企事业单位也需要经济统计学专业人才来支持其决策过程。毕业生可以在企业中从事市场调研、销售预测、供应链管理等工作,帮助企业做出更加准确的决策。
岗位示例:市场调研分析师、销售预测分析师、供应链管理师等。
4. 咨询公司
就业领域:在咨询公司,经济统计学专业毕业生可以参与到各种项目中,为客户提供数据分析和决策支持。咨询行业对于数据驱动决策的需求很高,因此经济统计学专业毕业生在这个领域有着广阔的就业机会。
岗位示例:数据分析顾问、市场研究顾问等。
5. 教育和研究机构
就业领域:经济统计学专业毕业生还可以在教育和研究机构中从事相关学科的教学和研究工作。例如,成为经济学、统计学等专业教师,或在经济研究所、统计研究所等研究机构中从事研究工作。
岗位示例:高校教师、研究员等。
6. 科研和技术开发
经济统计学专业毕业生还可以在高新技术企业从事数据分析和技术开发工作,利用统计原理和技术解决复杂的数据问题,推动技术创新和产业升级。
薪资水平
经济统计学专业由于其在各个行业的广泛应用和复杂的专业性,相关职业的薪资水平相对较高。毕业生在政府机构、金融机构、大型企业等单位工作,往往能够获得较为丰厚的薪酬待遇。尤其是在金融领域,对于掌握经济统计学专业知识的人才的需求更为迫切,相关职业的薪资水平更是相当可观。
就业前景
总的来说,经济统计学专业的就业前景非常广阔。随着大数据和人工智能技术的不断发展,数据的重要性愈发凸显,经济统计学专业人才在各个领域的需求也在不断增加。因此,经济统计学专业的毕业生在就业市场上具有较高的竞争力。
需要注意的是,虽然经济统计学专业的就业前景较好,但毕业生在就业时仍需关注自身的综合素质和专业技能的提升,以更好地适应市场需求和实现个人职业发展。
大公司
经济统计学专业毕业生可以去以下几类大公司:
1. 金融类大公司
银行:
国有大型银行:如中国工商银行、中国农业银行、中国银行、中国建设银行等,经济统计学专业毕业生可以在银行的风险管理部门,运用统计模型和数据分析方法评估信贷风险;在市场研究部门,分析市场趋势和客户需求,为银行的产品研发和营销策略提供数据支持;也可以在财务部门,负责财务数据的统计和分析工作。
股份制商业银行:例如招商银行、浦发银行、中信银行等,这些银行对数据分析和市场研究的需求也很高,毕业生有机会参与到银行的业务拓展和创新项目中,利用统计分析为银行的决策提供依据。
证券:
大型证券公司:像中信证券、国泰君安证券、海通证券等,毕业生可以在证券的研究部门,从事行业研究和市场分析工作,为投资决策提供研究报告;在投资银行部门,参与企业融资和并购项目的尽职调查和风险评估,运用统计方法对企业的财务数据和市场表现进行分析。
证券交易所:如上海证券交易所、深圳证券交易所,经济统计学专业的人才可以从事市场监测、数据分析和风险防控等工作,保障证券市场的平稳运行。
保险:
知名保险集团:如中国人寿保险、中国平安保险、太平洋保险等,毕业生可以在保险公司的精算部门,运用统计学和数学模型进行保险费率的计算和风险评估;在市场销售部门,通过数据分析客户需求和市场趋势,制定营销策略和产品方案。
2. 互联网科技类大公司
头部互联网企业:
电商平台:如阿里巴巴、京东等,经济统计学专业毕业生可以在这些公司的数据分析部门,负责用户行为分析、销售数据分析和市场趋势预测,为电商平台的运营和决策提供数据支持;在供应链管理部门,运用统计方法优化库存管理和物流配送流程。
社交网络平台:如腾讯、字节跳动等,毕业生可以参与到用户数据分析和产品优化工作中,通过分析用户行为和社交网络数据,为产品的功能设计和用户体验提升提供建议;在广告投放部门,利用统计模型进行广告效果评估和投放策略优化。
科技公司:
软件公司:如微软、甲骨文等,经济统计学专业的人才可以在软件公司的市场调研和产品研发部门工作,通过数据分析市场需求和用户反馈,为软件产品的开发和改进提供依据;在质量控制部门,运用统计方法进行软件测试和质量评估。
人工智能公司:例如百度、商汤科技等,毕业生可以在人工智能算法研发和数据标注等岗位工作,利用统计学知识处理和分析大量的数据,为人工智能模型的训练和优化提供支持。
3. 咨询类大公司
国际咨询公司:
麦肯锡(McKinsey):为企业提供战略咨询、管理咨询等服务,经济统计学专业毕业生可以在项目中负责数据收集、分析和解读,为客户提供基于数据的决策建议;参与市场调研和行业分析,帮助客户了解市场动态和竞争态势。
波士顿咨询(BCG):在为企业提供咨询服务的过程中,需要大量的数据分析和模型构建,经济统计学专业的人才可以运用专业知识,为客户制定战略规划和业务解决方案;协助客户进行市场预测和风险评估。
本土咨询公司:
和君咨询:在国内咨询市场具有一定影响力,经济统计学专业毕业生可以参与到企业管理咨询、市场调研等项目中,通过数据分析和行业研究,为企业提供咨询服务和解决方案;为企业的战略制定和业务转型提供支持。
正略钧策:专注于战略咨询、人力资源咨询等领域,毕业生可以在项目中运用统计方法进行市场分析和企业绩效评估,为客户提供专业的咨询建议和改进方案。
4. 制造业类大公司
汽车制造企业:
传统汽车厂商:如上汽集团、一汽集团、东风汽车等,经济统计学专业毕业生可以在汽车制造企业的生产管理部门,运用统计方法进行生产过程监控和质量控制;在市场研究部门,分析汽车市场的需求和竞争态势,为企业的产品研发和市场营销提供决策依据。
新能源汽车企业:如特斯拉、比亚迪等,毕业生可以参与到新能源汽车的市场调研和数据分析工作中,为企业的产品创新和市场拓展提供支持;在供应链管理部门,优化供应链流程,降低成本,提高效率。
电子制造企业:
苹果公司(Apple):其供应商和代工厂中,经济统计学专业人才可以在生产计划和物流管理方面,通过数据分析优化生产排程和库存管理;在质量控制环节,运用统计方法进行产品质量检测和分析,确保产品质量符合标准。
华为公司:在通信设备和电子产品制造领域具有重要地位,毕业生可以在华为的市场研究和产品研发部门工作,分析市场需求和技术趋势,为产品的研发和创新提供数据支持;在供应链管理和生产运营部门,运用统计方法提高生产效率和质量水平。
5. 能源类大公司
石油天然气企业:
中国石油天然气集团公司(中石油):经济统计学专业毕业生可以在中石油的市场研究和销售部门,分析石油市场的供需情况和价格走势,为企业的销售策略和市场拓展提供决策依据;在生产运营部门,运用统计方法进行生产过程监控和优化,提高生产效率和资源利用率。
中国石油化工集团公司(中石化):在中石化的科研和生产管理部门,毕业生可以参与到石油化工产品的研发和生产过程中,运用统计分析方法优化生产工艺和产品质量;在市场销售部门,分析市场需求和竞争态势,制定营销策略和价格策略。
电力企业:
国家电网公司:经济统计学专业毕业生可以在国家电网的电力市场研究和需求预测部门工作,分析电力市场的供需情况和负荷变化趋势,为电网的规划和运营提供数据支持;在电力营销部门,运用统计方法进行客户分析和市场细分,制定差异化的营销策略。
南方电网公司:在南方电网的生产管理和调度部门,毕业生可以利用统计方法进行电网运行状态监测和故障诊断,提高电网的可靠性和稳定性;在能源管理和节能减排方面,运用统计分析方法优化能源配置和降低碳排放。
知名企业
经济统计学领域的“大公司”通常是指那些在金融、咨询、数据科学、信息技术等行业中,积极应用经济统计学原理和技术进行数据分析、市场研究、风险管理等活动的企业。虽然这些公司并不一定专门从事经济统计学的研究,但它们往往是经济统计学专业毕业生的主要雇主之一。以下是一些可能雇用经济统计学专业人才的大型企业:
金融机构:
投资银行(如摩根大通、高盛等)
商业银行(如工商银行、建设银行等)
保险公司(如平安保险、中国人寿等)
对冲基金和资产管理公司
咨询服务公司:
四大会计师事务所(普华永道、德勤、安永、毕马威)
管理咨询公司(如麦肯锡、波士顿咨询集团BCG、贝恩公司等)
互联网和科技公司:
BAT(百度、阿里巴巴、腾讯)
美团、京东等电商平台
Google、Facebook、Amazon等国际互联网巨头
数据科学与分析公司:
数据分析公司(如Palantir Technologies)
市场调研机构(如尼尔森、益普索Ipsos等)
政府机构和国际组织:
国家统计局、中央银行等政府机构
国际货币基金组织(IMF)、世界银行等国际组织
电信运营商:
中国移动、中国联通、中国电信等
研究机构与智库:
各种经济研究所、社会科学院等研究机构
教育培训机构:
提供数据分析和统计学课程的教育机构或在线平台
需要注意的是,虽然上述企业可能不是专门从事经济统计学工作的公司,但它们在各自的业务活动中都离不开对经济数据的分析和统计方法的应用。因此,对于希望在经济统计学领域发展的个人而言,这些公司提供了广泛的就业机会。此外,还有许多中小型企业和初创公司也可能需要经济统计学专才来帮助它们进行市场分析、风险评估等工作。
大公司业务范围
商汤科技业务涵盖智慧商业、智慧城市、智慧生活、智能汽车四大板块,具体如下:
1. 智慧商业
企业方舟开放平台:为企业提供通用的人工智能开发和应用平台,帮助企业快速构建和部署人工智能解决方案,实现业务流程的智能化优化,如智能客服、智能推荐等。
行业产品:包括商业空间管理、住宅物业管理、工业质量控制、公共设施维护等,利用人工智能技术提升各行业的运营效率和管理水平。例如在工业质量控制中,通过图像识别和数据分析技术,实时检测产品质量缺陷。
通用云服务:提供身份认证云服务等,保障企业和用户的信息安全和业务安全。
2. 智慧城市
城市方舟开放平台:基于人工智能技术,为城市管理和运营提供综合性的平台解决方案,实现城市资源的优化配置和智能化管理。
行业产品:
出行及交通管理:利用智能视频分析和大数据技术,实时监测交通流量、路况信息,优化交通信号控制,提升城市交通运行效率。
城市服务:包括城市公共设施管理、环境卫生监测等,提高城市服务的质量和响应速度。
环境保护:对环境质量进行实时监测和分析,为环境保护决策提供数据支持。
应急响应:在突发事件发生时,快速提供应急指挥和决策支持,提高应急响应能力。
3. 智慧生活
智能移动终端平台:为移动终端设备提供人工智能技术支持,如手机解锁、智能影片、智能影像等功能,提升用户的移动设备使用体验。
混合现实平台:包括特效引擎、AI 数字人、三维空间重建等技术,为用户带来沉浸式的虚拟/增强现实体验,应用于游戏、娱乐、教育等领域。
智能家居:研发智能门锁、智能大屏幕产品等智能家居设备,实现家居的智能化控制和管理,为用户提供便捷、舒适、安全的家居生活环境。
智慧医疗:涵盖智慧诊疗、智慧就医、智慧医学科研、智慧医疗云等,利用人工智能技术辅助医疗诊断、疾病预测、医疗影像分析等,提高医疗服务的质量和效率。
4. 智能汽车
商汤绝影智能汽车平台:
智能车舱:提供智能座舱解决方案,包括语音交互、手势识别、人机交互系统等,提升车内用户的交互体验和驾驶安全性。
量产智能驾驶:研发自动驾驶技术,实现车辆的自动行驶和智能决策,应用于乘用车、商用车等多种车型。
自动驾驶接驳:为特定场景下的自动驾驶接驳服务提供技术支持,如园区、机场等。
路云平台:通过车路协同技术,实现车辆与道路基础设施之间的信息交互和协同,提高自动驾驶的安全性和可靠性。
赋能引擎:为汽车行业合作伙伴提供人工智能技术赋能,帮助其快速实现汽车智能化转型。
麦肯锡(McKinsey & Company)是一家全球领先的管理咨询公司,其业务范围非常广泛,涵盖多个行业和领域。以下是对麦肯锡业务范围的概述:
战略规划:
帮助客户制定长期战略,包括市场定位、增长战略、产品组合优化等。
为客户选择潜在的第二层面业务,并为未来发展选择第三层面业务。
经营运作:
改善客户的销售、制造、运营及新产品开发等方面的表现。
提升客户对市场需求的响应速度和效率。
组织结构与变革管理:
制定组织结构,帮助企业实现成长、优化运营管理和供应链管理。
支持企业的兼并重组、组织与变革管理。
财务与企业金融:
资源分配、财务规划与管理。
企业金融策略的制定和实施。
数字化转型:
帮助客户实现数字化转型,利用新兴技术改善业务流程和服务质量。
营销与销售:
提升产品的营销水平,帮助客户更好地推广产品和服务。
并购后整合:
协助企业在并购后进行整合,确保业务平稳过渡和发展。
供应链管理:
优化供应链管理,降低成本,提高效率。
信息技术增值:
利用信息技术提升企业价值,包括IT治理、架构设计等。
可持续发展:
为企业提供可持续发展战略建议,促进环保和社会责任的履行。
麦肯锡的服务对象非常广泛,包括大型跨国公司、政府机构、非营利组织等。其客户遍布几乎所有行业,包括但不限于金融、健康保健、制造业、科技、能源、教育等。麦肯锡通过其全球网络和深厚的行业专业知识,为客户提供定制化的解决方案,帮助它们应对管理和业务上的挑战。
在中国,麦肯锡同样活跃,已经为大中华区的客户完成了大量的咨询项目,涵盖了从公司整体战略到具体业务单元的各个方面。麦肯锡在中国的服务同样体现了其在全球范围内的高标准和专业水平。
从事岗位
经济统计学专业毕业生可以从事的岗位非常广泛,涵盖了数据分析、统计建模、经济预测、风险管理等多个领域。具体来说,以下是一些常见的岗位方向:
1. 数据分析类岗位
数据分析师:负责收集、处理、分析和解释数据,提取有价值的信息,为决策提供支持。
市场调研分析师:专注于市场调研领域,运用统计方法进行数据收集和分析,帮助企业了解市场动态和消费者需求。
销售预测分析师:利用历史销售数据和市场趋势,进行销售预测,为企业制定销售计划提供数据支持。
2. 统计建模与预测类岗位
统计建模师:运用统计方法和工具,建立数学模型来描述和预测经济现象或市场行为。
经济预测师:基于经济数据和分析,对未来经济趋势进行预测,为政府和企业提供决策参考。
3. 风险管理类岗位
风险管理师:在金融机构或企业中,负责识别、评估和管理潜在的风险,确保业务稳健运行。
精算师(主要在保险领域):运用数学、统计学和金融理论,评估保险产品的风险和定价,确保保险公司的稳健经营。
4. 咨询与研究类岗位
咨询顾问:在咨询公司中,为客户提供专业的数据分析、市场调研和决策支持服务。
研究员:在经济研究所、统计研究所或高校中,从事经济统计学相关的研究工作,推动学科发展。
5. 金融与投资类岗位
投资分析师:在证券公司、基金公司或银行等金融机构中,负责分析投资产品的风险和收益,为投资决策提供支持。
财务分析师:在企业中,负责财务分析、预算管理和成本控制等工作,为企业经营决策提供数据支持。
6. 其他相关岗位
银行柜员、会计人员、出纳员、财务助理、银行客户服务、销售代表、审计人员等,这些岗位虽然不是经济统计学专业的直接对口岗位,但经济统计学专业的知识和技能在这些岗位上也能得到很好的应用。
薪资与前景
经济统计学专业毕业生的薪资水平因就业领域和单位性质的不同而有所差异,但整体来说,该专业的薪资水平较为可观。随着大数据和人工智能技术的不断发展,数据的重要性愈发凸显,经济统计学专业人才在各个领域的需求也在不断增加,因此该专业的就业前景非常广阔。
综上所述,经济统计学专业毕业生可以从事的岗位非常多样,涵盖了数据分析、统计建模、经济预测、风险管理等多个领域。同时,随着数据驱动决策的需求不断增加,该专业的就业前景也非常乐观。
工作日常
行业研究员的工作日常通常包括以下几个方面:
1. 信息收集与整理
行业动态追踪:
持续关注行业相关的新闻网站、社交媒体、专业论坛、行业报告等渠道,及时获取行业内的最新政策法规、技术突破、市场趋势、竞争态势等信息。例如在人工智能行业,关注新的算法突破、应用场景拓展以及各国政府对人工智能的政策支持或限制等方面的消息。
订阅行业研究机构的报告和资讯服务,获取专业的行业分析和数据。
公司信息收集:
搜集所研究行业内相关企业的财务报告、招股说明书、公司公告等公开资料,了解企业的经营状况、财务状况、业务布局、发展战略等。
关注企业的新产品发布、市场推广活动、合作伙伴关系等动态,分析其对企业竞争力和行业格局的影响。
2. 数据分析与研究
数据处理与分析:
将收集到的大量行业和公司数据进行整理、分类和清洗,确保数据的准确性和完整性。
运用统计分析方法和工具,对数据进行深入分析,例如计算市场份额、增长率、利润率等指标,以评估行业和企业的发展状况。
构建数据模型,进行市场预测和趋势分析,为投资决策或战略规划提供依据。
行业研究报告撰写:
根据数据分析结果和研究结论,撰写行业研究报告。报告内容包括行业概况、市场规模与增长趋势、竞争格局、产业链分析、发展前景及风险等方面。
对行业内的重点企业进行案例分析,评估其竞争优势、劣势和发展潜力。
提出对行业未来发展的观点和建议,为公司管理层或客户提供决策参考。
3. 沟通与协作
内部沟通:
与公司内部的投资团队、市场团队、研发团队等进行沟通,分享行业研究成果和见解,为公司的投资决策、产品研发、市场拓展等提供支持。
参加内部会议,汇报研究进展和成果,解答同事们对行业相关问题的疑问,共同探讨公司的发展战略。
外部沟通:
与行业专家、学者、分析师等进行交流,获取行业的前沿观点和深度见解,拓宽研究思路。
与所研究行业内的企业高管、投资者等进行沟通,了解企业的发展战略和市场动态,获取一手信息。
4. 其他工作
参加行业会议和研讨会:参加行业内的学术会议、产业研讨会、投资峰会等活动,了解行业的最新发展动态和趋势,与同行进行交流和学习,拓展人脉资源。
持续学习与知识更新:行业发展迅速,行业研究员需要不断学习新的知识和技能,关注行业的新技术、新趋势、新政策,更新自己的知识体系,保持对行业的敏锐洞察力。
金融机构风险管理师(Financial Risk Manager, FRM)的工作职责主要集中在识别、评估和管理金融风险上,以确保机构的稳健运营和合规性。他们的工作日常通常包括以下几方面的内容:
风险识别与评估:
识别和评估各类金融风险,如市场风险、信用风险、流动性风险、操作风险等。
使用历史数据和市场信息来预测未来的风险状况。
风险管理框架制定与实施:
设计并实施全面的风险管理框架,确保所有风险都被恰当地识别、衡量、监测和控制。
制定风险管理制度和流程,确保风险管理的有效执行。
风险报告与分析:
准备定期的风险报告,为管理层提供决策依据。
进行风险分析,提供关于风险状况及其对业务影响的见解。
合规与监管:
确保金融机构遵守相关的法律法规和监管要求。
关注监管变化,评估其对风险管理的影响,并做出相应调整。
模型与工具开发:
开发和维护用于风险评估和监测的模型和工具。
使用统计和定量分析方法,如VaR(Value at Risk)模型,来评估市场风险。
应急计划与压力测试:
制定应急计划,以应对极端市场条件下的风险。
进行压力测试,评估在极端情况下金融机构的风险承受能力。
内部控制与审计:
参与内部控制流程的制定与执行,确保风险管理措施得到有效落实。
配合内部或外部审计,确保风险管理活动的透明度和合规性。
培训与教育:
对内部员工进行风险管理相关的培训,提高他们的风险意识。
参与制定员工继续教育计划,确保知识更新。
跨部门合作:
与交易员、投资顾问、法律顾问等部门密切合作,共同管理风险。
参与跨部门项目,为业务决策提供风险管理意见。
技术应用与创新:
探索并应用新技术(如大数据、人工智能等)来提高风险管理的效率和准确性。
关注金融科技发展,评估新技术在风险管理中的应用潜力。
市场研究与分析:
持续关注市场动态,分析宏观经济变化对金融机构的影响。
跟踪行业趋势,为风险管理策略提供参考。
金融机构风险管理师的工作需要高度的责任心、精确的数据分析能力和良好的沟通技巧。此外,由于金融市场复杂多变,风险管理师需要不断学习新的知识和技术,以应对日益复杂的金融环境。
专业特点
经济统计学专业的优点
就业面广
多行业就业机会:经济统计学专业的学生既可以在传统的金融行业,如银行、证券、保险等机构,从事风险评估、市场分析、投资决策等工作;也能在新兴的互联网、大数据等行业,负责数据分析、数据挖掘、算法设计等岗位。还可以进入政府部门的统计机构,参与国家、地区和行业经济数据的收集和整理工作,为政策制定提供数据支持;在企业中从事市场调研、销售预测、供应链管理等工作,帮助企业做出更准确的决策。
跨领域发展:融合了经济学和统计学的知识,使得毕业生不仅具备经济分析的思维,还掌握了统计方法和技术,能够在经济与统计的交叉领域中发挥优势,适应不同行业对复合型人才的需求。
实用性强
数据分析能力:在当今数字化时代,数据成为企业和社会决策的重要依据。经济统计学专业培养学生收集、整理、分析和解释经济数据的能力,能够从大量的数据中提取有价值的信息,为决策提供支持。这种数据分析能力在各个领域都具有重要的应用价值,无论是市场调研、财务分析还是政策评估等方面都不可或缺。
解决实际问题:通过运用统计方法和经济理论,可以对经济现象和经济问题进行定量分析,为企业的经营管理、政府的政策制定提供科学的依据和建议。例如,通过对市场需求和供给的数据分析,为企业制定合理的生产计划和营销策略;通过对经济增长和通货膨胀等数据的研究,为政府制定宏观经济政策提供参考。
职业发展潜力大
晋升机会多:在工作中,凭借专业的数据分析能力和对经济形势的准确把握,能够为企业或机构提供有价值的决策建议,从而更容易获得晋升机会,晋升为数据分析师、统计经理、经济研究员等高级职位,负责更复杂的数据分析和决策支持工作。
薪资待遇较高:由于该专业的技能具有较高的专业性和稀缺性,特别是在金融、互联网等行业,对经济统计学专业人才的需求较大,因此毕业生往往能够获得相对较高的薪资待遇。随着工作经验的积累和技能的提升,薪资水平还有较大的上升空间。
培养综合素养
数理逻辑思维:课程中涉及大量的数学和统计学理论及方法,如概率论、数理统计、回归分析等,通过学习这些课程,能够培养学生严谨的数理逻辑思维能力,提高对数据的敏感度和分析能力。
经济洞察力:同时学习经济学的相关课程,使学生了解经济运行的基本规律和原理,具备宏观经济分析和微观经济决策的能力,能够从经济的角度看待和分析问题,培养学生的经济洞察力。
经济统计学专业的缺点
课程难度大
数学基础要求高:经济统计学专业需要具备扎实的数学基础,课程中包含高等数学、线性代数、概率论与数理统计等数学课程,这些课程的难度较大,对于数学基础薄弱的学生来说,学习起来可能会比较吃力,需要花费更多的时间和精力来掌握。
统计方法复杂:统计学的理论和方法较为复杂,如多元统计分析、时间序列分析等,需要学生具备较强的抽象思维和逻辑推理能力。而且这些方法在实际应用中还需要结合具体的经济问题进行分析,对学生的综合应用能力要求较高。
就业竞争压力大
热门专业导致人才扎堆:随着大数据时代的到来,经济统计学专业的就业前景被广泛看好,吸引了众多学生报考,导致该专业的毕业生数量逐年增加。与此同时,就业市场上对经济统计学专业人才的需求虽然也在增长,但增长速度相对较慢,使得就业竞争压力逐渐增大。
跨专业竞争:统计学和经济学的基础知识相对容易获取,一些其他专业的学生,如数学专业、计算机专业的学生,也可以通过自学或参加培训掌握经济统计学的相关知识和技能,从而与经济统计学专业的学生竞争相关岗位。这些跨专业的竞争者在某些方面可能具有一定的优势,例如数学专业的学生在数学建模和算法设计方面可能更具优势,计算机专业的学生在编程和数据处理方面可能更熟练。
工作压力大
数据处理任务繁重:在实际工作中,经济统计学专业的人员往往需要处理大量的数据,包括数据的收集、整理、清洗和分析等工作。这些工作任务繁琐、工作量大,需要花费大量的时间和精力,容易导致工作压力过大。
工作要求高:由于数据分析的结果直接影响到决策的准确性,因此对数据分析的质量和准确性要求很高。经济统计学专业的人员需要不断提高自己的数据分析能力和专业水平,以满足工作的要求,这也会给他们带来一定的工作压力。
专业局限性
过于专注量化分析:经济统计学专业强调量化分析和数据驱动的决策方法,但在某些情况下,经济现象和社会问题不仅仅是由数据决定的,还受到许多非量化因素的影响,如政治、文化、社会心理等。过于依赖量化分析可能会忽略这些非量化因素,导致分析结果的片面性。
缺乏对行业的深入了解:经济统计学专业的课程主要集中在统计学和经济学的理论和方法上,对于具体行业的知识和业务流程了解相对较少。在实际工作中,可能会遇到对行业背景和业务知识要求较高的情况,需要花费时间去学习和了解相关行业的知识,才能更好地开展工作。
推荐学校
经济统计学专业推荐院校众多,以下是一些在该专业领域具有较高声誉和实力的院校:
一、研究型大学
中国人民大学:中国人民大学在经济统计学领域享有很高的声誉,其经济统计学专业不仅师资力量雄厚,而且研究成果丰硕,是国内该领域的佼佼者。
厦门大学:厦门大学的经济统计学专业也是国内一流的,该校在经济学和统计学方面都有深厚的底蕴,为学生提供了良好的学习和研究环境。
北京大学:北京大学作为国内顶尖学府之一,其经济统计学专业同样具有很高的教学水平和科研实力,是众多学子梦寐以求的求学之地。
复旦大学、清华大学:这些学校也在经济统计学领域具有很高的研究水平和教学质量,为学生提供了广阔的发展空间和机会。
二、财经类院校
上海财经大学:作为财经类院校的佼佼者,上海财经大学的经济统计学专业在业界具有很高的认可度,该校注重理论与实践相结合,为学生提供了丰富的实践机会。
中央财经大学:中央财经大学的经济统计学专业同样具有很高的教学水平和科研实力,该校在财经领域具有很高的影响力,为学生提供了良好的就业前景。
西南财经大学:西南财经大学的经济统计学专业也备受推崇,该校在西部地区乃至全国都享有很高的声誉,为学生提供了优质的教育资源。
三、其他优秀院校
西安交通大学、中南财经政法大学:这些学校在经济统计学领域也具有较高的研究水平和教学质量,为学生提供了良好的学习和发展平台。
天津财经大学、暨南大学:这些院校的经济统计学专业同样具有很高的实力,它们在各自的地区或领域内都有着显著的影响力。
四、应用型院校
对于希望将经济统计学知识应用于实践的学生来说,一些应用型院校也是不错的选择。例如,长春财经学院、西安欧亚学院、河北金融学院等,这些院校注重培养学生的实践能力和职业素养,为学生提供了丰富的实习和就业机会。
综合考虑
在选择经济统计学专业的院校时,除了考虑学校的声誉和实力外,还需要考虑自己的兴趣、职业规划以及学校的教学资源、师资力量、课程设置等因素。建议考生和家长可以多了解一些院校的信息,结合自己的实际情况做出合理的选择。
请注意,以上推荐仅供参考,具体选择还需结合个人实际情况和需求进行综合考虑。
行业证书
经济统计学专业的学生为了增强自身的就业竞争力,可以选择考取与专业相关的行业证书。这些证书不仅可以证明个人的专业技能,还能为求职提供额外的支持。以下是一些常见的、对经济统计学专业学生有用的证书:
证券从业资格证:
是证券行业的入门证书,适合希望在证券公司、基金公司等金融机构工作的学生。
注册会计师证(CPA):
经过注册会计师全国统一考试合格后颁发,适用于希望从事审计、税务、财务管理等相关工作的学生。
会计师资格证:
包括会计从业资格证、助理会计师资格证、中级会计师资格证等,适用于希望在会计领域发展的学生。
精算师证书:
需要通过一系列考试,适用于希望在保险、金融等领域从事风险评估和财务规划的学生。
特许金融分析师(CFA):
代表全球投资行业最高水平,适用于希望在银行、证券公司、投资公司等领域工作的学生。
金融风险管理师(FRM):
主要针对希望从事金融风险管理工作的学生,认证持有人具备识别、评估和管理金融风险的能力。
基金从业资格证:
是基金行业的入门证书,适合希望在基金公司、证券公司等机构工作的学生。
期货从业资格证:
适用于希望从事期货交易、风险管理等工作的学生。
注册国际投资分析师(CIIA):
是一项全球通用的金融行业高级资格认证,适用于希望在全球范围内从事投资分析工作的学生。
统计师证书:
对于希望专注于统计学领域,特别是数据收集、整理和分析的学生来说很有帮助。
ACCA(特许公认会计师公会):
全球认可的会计资格证书,适合希望在国际会计师事务所或跨国公司工作的学生。
选择考取哪种证书取决于个人的兴趣、职业规划以及所在地区的行业需求。在决定考取证书之前,建议先了解相关证书的具体要求、考试难度、以及对职业生涯的帮助程度。此外,考虑到考试准备所需的时间和精力,合理安排备考计划也很重要。
软件
经济统计学专业的学生需要掌握多种软件工具,以帮助他们进行数据处理、统计分析、模型构建和可视化等工作。以下是经济统计学专业学生通常需要掌握的一些常见软件:
统计软件:
SPSS(Statistical Package for the Social Sciences):常用于社会科学领域,易于上手,适合初学者。
Stata:广泛应用于经济学、医学和社会科学等领域,功能强大且易用。
SAS(Statistical Analysis System):在数据挖掘、商业智能和预测分析中有广泛应用。
编程语言:
Python:因其强大的数据处理库(如NumPy、Pandas)和机器学习库(如Scikit-learn、TensorFlow),成为数据科学和统计分析中最受欢迎的语言之一。
R:专为统计计算和图形绘制设计,拥有丰富的包(packages)支持各种统计方法和可视化需求。
Julia:一种较新的编程语言,专为高性能数值和科学计算设计,近年来逐渐受到关注。
数据库管理系统:
SQL(Structured Query Language):用于管理和查询关系型数据库,如MySQL、PostgreSQL等。
NoSQL数据库:如MongoDB、Cassandra等,适用于非结构化数据存储。
数据可视化工具:
Tableau:强大的商业智能工具,可以创建交互式的仪表板和报表。
Power BI:微软提供的数据可视化工具,支持多种数据源,可以制作美观的报告和仪表板。
Excel:尽管主要用于表格数据处理,但也可以用于简单的数据可视化。
机器学习框架:
TensorFlow 和 PyTorch:广泛使用的深度学习框架,支持构建复杂的神经网络模型。
Scikit-learn:一个基于Python的机器学习库,提供了丰富的算法实现。
集成开发环境(IDE):
Jupyter Notebook:一种开源的Web应用程序,允许用户创建和共享包含实时代码、方程式、可视化和叙述文本的文档。
RStudio:专为R语言设计的IDE,支持代码编写、运行、调试等功能。
PyCharm 或 Visual Studio Code:适用于Python编程的IDE。
版本控制系统:
Git:常用的版本控制工具,用于跟踪项目文件的变化历史,支持多人协作。
其他工具:
LaTeX:用于编写技术文档,特别是在学术出版物中很常见。
Markdown:一种轻量级标记语言,常用于编写简单文档和笔记。
掌握上述软件工具,可以帮助经济统计学专业的学生更好地处理数据、分析问题、展示结果,并为未来的职业生涯奠定坚实的基础。当然,具体的软件需求可能会根据个人兴趣、研究方向和职业规划的不同而有所差异。
编程语言
经济统计学专业需要掌握以下编程语言:
1. Python
数据处理与分析:Python拥有丰富的数据处理库,如Pandas,它提供了高效的数据结构和数据处理工具,能方便地进行数据清洗、转换和分析。例如,使用Pandas可以轻松读取和处理各种格式的数据集,如CSV、Excel文件等,并对数据进行筛选、聚合、排序等操作。
统计建模与机器学习:通过Scikit - learn等库,Python可以进行多种统计建模和机器学习算法的实现。从简单的线性回归、逻辑回归到复杂的聚类、分类和深度学习算法,都可以在Python环境中高效完成。这对于经济统计学专业学生进行经济数据的建模和预测非常有帮助。
数据可视化:Python的Matplotlib和Seaborn库提供了强大的数据可视化功能。可以绘制各种统计图表,如柱状图、折线图、散点图、箱线图等,直观地展示经济数据的分布、趋势和关系,帮助分析师更好地理解和解释数据。
2. R语言
专业统计分析:R语言是专门为统计分析和数据可视化而设计的编程语言。它拥有大量的统计函数和包,几乎涵盖了所有的统计分析方法,如方差分析、回归分析、时间序列分析等。在经济统计学领域,R语言常用于进行复杂的统计建模和假设检验。
数据可视化与报告生成:R语言中的ggplot2包是一个非常强大的数据可视化工具,它基于图层的设计理念,允许用户创建高度定制化和美观的统计图形。此外,R Markdown功能可以将数据分析过程、结果以及解释性文本整合在一个文档中,方便生成数据分析报告。
3. SQL
数据库管理与查询:在经济统计学工作中,经常需要与数据库进行交互,SQL(Structured Query Language)是用于管理和查询关系型数据库的标准语言。通过SQL,可以高效地从数据库中提取所需的经济数据,进行数据的存储、更新和检索。例如,使用SELECT语句可以从包含大量经济指标数据的数据库表中查询特定时间段、特定地区或特定行业的数据。
数据整合与预处理:当经济数据存储在多个不同的数据库表中时,SQL的JOIN操作可以将这些表根据相关字段进行关联,实现数据的整合。同时,SQL还可以进行数据的去重、缺失值处理等预处理工作,为后续的统计分析提供干净、准确的数据。
德国海归点评
经济统计学专业就是经济学专业+统计学专业,属于典型的复合专业。关于统计学,我以前写过一篇文章,统计学专业:计算保险费用的->数学不好的不要考虑了描述统计学是如何难,数学不好的不要学习。该专业不仅要学习统计学,还要另外花费时间学习经济学知识,所以,我不建议普通人学习该专业,因为真的是很难,对数学要求很高。
另外,该专业最大的一个问题就是从事的岗位数量是真的少,金融行业,银行行业,互联网行业,这些都是高端服务业,能提供的工作岗位非常有限。如果进入制造业,制造业绝大部分岗位都是需要技术的,需要理工科知识,该专业所能从事的岗位也非常少。
最后总结:学校不好,数学不好,就不要读该专业,否则,很难找到工作。
推荐阅读:
大学专业咨询,联系有多年世界500强公司经验的德国海归,不要zhang xue feng的20000,只要一杯咖啡起!
您的点赞,转发是对我最大的支持,是鼓励我走下去的动力,谢谢!