【线段树】【区间修改】codeforces1136E Nastya Hasn't Written a Legend

E. Nastya Hasn’t Written a Legend
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
In this task, Nastya asked us to write a formal statement.

An array a of length n and an array k of length n−1 are given. Two types of queries should be processed:

increase ai by x. Then if ai+1<ai+ki, ai+1 becomes exactly ai+ki; again, if ai+2<ai+1+ki+1, ai+2 becomes exactly ai+1+ki+1, and so far for ai+3, …, an;
print the sum of the contiguous subarray from the l-th element to the r-th element of the array a.
It’s guaranteed that initially ai+ki≤ai+1 for all 1≤i≤n−1.

Input
The first line contains a single integer n (2≤n≤105) — the number of elements in the array a.

The second line contains n integers a1,a2,…,an (−109≤ai≤109) — the elements of the array a.

The third line contains n−1 integers k1,k2,…,kn−1 (−106≤ki≤106) — the elements of the array k.

The fourth line contains a single integer q (1≤q≤105) — the number of queries.

Each of the following q lines contains a query of one of two types:

if the query has the first type, the corresponding line contains the character ‘+’ (without quotes), and then there are two integers i and x (1≤i≤n, 0≤x≤106), it means that integer x is added to the i-th element of the array a as described in the statement.
if the query has the second type, the corresponding line contains the character ‘s’ (without quotes) and then there are two integers l and r (1≤l≤r≤n).
Output
For each query of the second type print a single integer in a new line — the sum of the corresponding subarray.


 如果单纯想着老老实实对每个修改操作去修改a数组,显然会超时。注意到我们更新的时候的表达式 a [ j ] = a ′ [ i ] + ∑ i j − 1 k a[j]=a&#x27;[i]+\sum_{i}^{j-1}{k} a[j]=a[i]+ij1k (其中j>=i,而且j<=e, 这里e是最后一个可供更新增大的数的下标)
可以更变成 b [ j ] = a [ j ] − ∑ 1 j − 1 k = a ′ [ i ] − ∑ 1 i − 1 k = b ′ [ i ] b[j]=a[j]-\sum_1^{j-1}k=a&#x27;[i]-\sum_1^{i-1}k=b&#x27;[i] b[j]=a[j]1j1k=a[i]1i1k=b[i],那么就转变成了一个区间set的问题,我们需要将区间 [ i , e ] [i,e] [i,e]的值统统增加到 b ′ [ i ] b&#x27;[i] b[i]。那么就用线段树维护b数组解决好了。线段树维护的是区间和,再用一维 u p d [ i ] upd[i] upd[i]表示作用于这个区间的set操作,需要支持区间set,区间查询,点查询。
 至于e的值,可以由b数组的单调性去二分,这里效率变成了俩log,写单个log当然也可以,但是要额外维护一个区间最大值的域,而且又要另外写个函数,比较麻烦。
 用 u p d [ k ] = − i n f upd[k]=-inf upd[k]=inf来表示没有区间修改。由于这个问题的特殊性,后来的区间修改的值必然会大于原来区间中的每个数。那么我们只要在区间修改的时候做一次push_down操作,保证upd随着深度的增大而减小(当然-inf值除外),然后区间查询或者点查询的时候,取递归路径上upd的最大值去覆盖就行了(因为这个值一定比子区间的任何值都更加新)。

#include<cstdio>
#include<algorithm>
#define kl (k<<1)
#define kr (k<<1|1)
#define M (L+R>>1)
#define lin L,M
#define rin M+1,R
using namespace std;
using LL=long long;

int n,q,pos,l,r;
LL a[100005],K[100005],T[1<<18],upd[1<<18],x;
char o[2];

void build_tree(int k, int L, int R)
{
	if(L==R)
	{
		T[k]=a[L];
		upd[k]=-1E18;
		return ;
	}
	build_tree(kl,lin);
	build_tree(kr,rin);
	T[k]=T[kl]+T[kr];
	upd[k]=-1E18;
}

LL query(int k, int L, int R, int pos)
{
	if(L==R)
		return max(T[k],upd[k]);
	if(pos<=M)
		return max(query(kl,lin,pos),upd[k]);
	else
		return max(query(kr,rin,pos),upd[k]);
}

void modify(int k, int L, int R, int l, int r, LL val)
{
	if(l<=L&&R<=r)
	{
		upd[k]=val;
		return ;
	}
	upd[kr]=max(upd[k],upd[kr]);
	upd[kl]=max(upd[k],upd[kl]);
	upd[k]=-1E18;
	if(l<=M)
		modify(kl,lin,l,r,val);
	if(r>M)
		modify(kr,rin,l,r,val);
	T[k]=(upd[kl]>-1E18?upd[kl]*(M-L+1):T[kl])+(upd[kr]>-1E18?upd[kr]*(R-M):T[kr]);
}

LL sum(int k, int L, int R, int l, int r, LL val)
{
	if(l<=L&&R<=r)
		return max(val,upd[k])>-1E18?max(val,upd[k])*(R-L+1):T[k];
	LL res=0;
	if(l<=M)
		res+=sum(kl,lin,l,r,max(val,upd[k]));
	if(r>M)
		res+=sum(kr,rin,l,r,max(val,upd[k]));
	return res;
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%lld",&a[i]);
	for(int i=1;i<n;i++)
		scanf("%lld",&K[i]),K[i]+=K[i-1],a[i+1]-=K[i];
	for(int i=1;i<n;i++)
		K[i]+=K[i-1];
	scanf("%d",&q);
	build_tree(1,1,n);
	while(q--)
	{
		scanf("%s",o);
		if(o[0]=='+')
		{
			scanf("%d%lld",&pos,&x);
			LL tmp=query(1,1,n,pos)+x;
			int L=pos,R=n+1;
			while(L<R)
				if(query(1,1,n,M)<=tmp)
					L=M+1;
				else
					R=M;
			modify(1,1,n,pos,L-1,tmp);		
		}
		else
		{
			scanf("%d%d",&l,&r);
			printf("%lld\n",sum(1,1,n,l,r,-1E18)+K[r-1]-(l>1?K[l-2]:0));
		}
	}
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值