题目描述
金明的预算方案
选课
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 n元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的。
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有 0个、1 个或 2 个附件。每个附件对应一个主件,附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的 n 元。于是,他把每件物品规定了一个重要度,分为 5 等:用整数1∼5 表示,第 5 等最重要。他还从因特网上查到了每件物品的价格(都是 10 元的整数倍)。他希望在不超过 n 元的前提下,使每件物品的价格与重要度的乘积的总和最大。
总结
本题一般性题解是自己独立写的,而且思路很简洁,复杂度也很好
但是这题WA了好几次,每次都是写的时候信心满满,交完发现不对,用数据检测才发现漏洞(老毛病了。。。)
以后应该改改这个坏习惯,应该先把思路想明白了(至少先拿点好的数据测测再交啊! )
解析
解法1
由于本题的特殊限制,对于每个主件,最多可以分为五种情况:
1.都不买
2.只买主件
3.买主件与附件A
4.买主件与附件B
5.买主件与附件A、B
然后就可以转化为01背包了
但是我们岂可满足于此!
解法2
当附件很多且存在附件之后还有附件时应该怎么办呢?
深思熟虑后:啊哈!
我们把dp开成二维
dp[k][w]表示第k层依赖关系下,物品必须购买,w的钱获得的最大价值
对于处于第k层的物品A,枚举它的所有附件,将其作为第k+1层递归处理
然后尝试用第k层的dp值更新k-1层的dp值
最后,dp[0][n]就是答案
因为每个物品最多处理一次,单层递归复杂度是n
所以总时间复杂度为m*n(和01背包一样啊有木有!)
不难看出,空间复杂度也是n*m
代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+100;
int n,m;
struct node{
int w,v,belong;
int nxt[500],nm;
}p[500];
int a,b,c;
int f[80][34050];
int jd[500];
void Try(int k,int id){
for(int i=0;i<=n;i++){
if(i<p[id].w) f[k][i]=-2e9;
else f[k][i]=f[k-1][i-p[id].w]+p[id].v;
}
for(int i=1;i<=p[id].nm;i++){
Try(k+1,p[id].nxt[i]);
}
for(int i=0;i<=n;i++) f[k-1][i]=max(f[k-1][i],f[k][i]);
}
void print(){
for(int i=1;i<=n;i++) printf("%d ",f[0][i]);
printf("\n");
return;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&p[i].w,&p[i].v,&p[i].belong);
p[i].v*=p[i].w;
if(p[i].belong) p[p[i].belong].nxt[++p[p[i].belong].nm]=i;
}
for(int i=1;i<=m;i++){
if(p[i].belong) continue;
Try(1,i);
// print();
}
printf("%d",f[0][n]);
return 0;
}
/*
5 5
1 100 0
2 1 0
1 1000 2
2 2 2
6 10000 0
*/
解法3
树上dfs一边求出size和dfs序(注意是后序!)
因为后序dfs序,所以子节点的dfs序比父节点小
这样我们就可以从前往后dp
𝑑𝑝[𝑖][𝑗]表示前i个点里选j个物品的最大价值
那么转移就是:
𝑑𝑝[𝑖][𝑗]=max(𝑑𝑝[𝑖−1][𝑗−1]+𝑣𝑎𝑙[𝑝𝑜𝑠[𝑖]],𝑑𝑝[𝑖−𝑠𝑖𝑧[𝑝𝑜𝑠[𝑖]]][𝑗])
前一个转移是选当前课
后一个是不选当前课(那么之前就只能选到𝑖−𝑠𝑖𝑧[𝑝𝑜𝑠[𝑖]])
最后答案就是dp[n][m]
代码
#include <bits/stdc++.h>
using namespace std;
const int N=1800;
int n,m;
/*
op=0 被自己覆盖
op=1 被儿子覆盖
op=2 被父亲覆盖
*/
struct node{
int to,nxt;
}p[N];
int fi[N],cnt=-1,ru[N];
int v[N],belong[N];
void addline(int x,int y){
p[++cnt]=(node){y,fi[x]};
fi[x]=cnt;
}
int a,b,c;
int pos[N],dfs[N],size[N],tot;
void build(int x,int fa){
size[x]=1;
for(int i=fi[x];~i;i=p[i].nxt){
int to=p[i].to;
build(to,x);
size[x]+=size[to];
}
dfs[x]=++tot;
pos[tot]=x;
}
int dp[N][N];
int main(){
memset(fi,-1,sizeof(fi));
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&belong[i],&v[i]);
if(belong[i]) addline(belong[i],i);
else addline(0,i);
}
build(0,-1);
for(int i=1;i<=tot;i++){
int id=pos[i];
for(int j=m;j>=1;j--){
dp[i][j]=max(dp[i-1][j-1]+v[id],dp[i-size[id]][j]);
}
}
printf("%d",dp[n][m]);
return 0;
}
/*
6
1 30 3 2 3 4
2 16 2 5 6
3 5 0
4 4 0
5 11 0
6 5 0
*/