YBTOJ&洛谷P1407:稳定婚姻(强连通分量)

题目描述

我们已知n对夫妻的婚姻状况,称第 i 对夫妻的男方为 Bi ,女方为 Gi。

若某男 Bi 与某女 Gi 曾经交往过( i!=j ),则当某方与其配偶(即 Bi 与 Gi 或 Bj 与 Gj)感情出现问题时,他们有私奔的可能性。不妨设 Bi 和其配偶 Gi 感情不和,于是 Bi 和 Gj 旧情复燃,进而 Bj 因被戴绿帽而感到不爽,联系上了他的初恋情人 一串串的离婚事件像多米诺骨牌一般接踵而至。若在 Bi 和 Gj 离婚的前提下,这 n 个人最终依然能够结合成 n 对情侣,那么我们称婚姻 i 为不安全的,否则婚姻 i 就是安全的。

给定所需信息,你的任务是判断每对婚姻是否安全。

解析

考虑把边连成夫妻边和情侣边
那么我们的夫妻离婚后,假设从Bi 开始走,按照夫妻边和情侣边交替的顺序走回了自己,那么这个婚姻就是不安全的
所以我们把夫妻从男向女连边,情侣从女向男连边,最后判环即可
判环的方法我们可以使用tarjan缩点,夫妻若在同一个强连通分量,就是不安全的

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N=4e6+2e5+100;
const int M=3e5+100;
int n,m,k;
int x[M],y[M],tp[M],v[N];
map<int,map<int,int> >mp;//1-n:行 n+1-n+m:列 

int dx[9]={0,-1,-1,-1,0,0,1,1,1};
int dy[9]={0,-1,0,1,-1,1,-1,0,1};
struct node{
	int to,nxt;
}p[N];
int cnt=-1,fi[N];
void addline(int x,int y){
//	printf("  add:x=%d y=%d\n",x,y);
	p[++cnt]=(node){y,fi[x]};
	fi[x]=cnt;
}
int id;

int dfn[N],low[N],col[N],siz[N],tot,tim,zhan[N],top;
void tarjan(int x){
	dfn[x]=low[x]=++tim;
	zhan[++top]=x;
	for(int i=fi[x];~i;i=p[i].nxt){
		int to=p[i].to;
		if(!dfn[to]){
			tarjan(to);
			low[x]=min(low[x],low[to]);
		}
		else if(!col[to]) low[x]=min(low[x],dfn[to]);
	}
	if(dfn[x]==low[x]){
		tot++;
		while(zhan[top]!=x){
			siz[tot]+=v[zhan[top]];
			col[zhan[top--]]=tot;
		}
		col[x]=tot;
		siz[tot]+=v[x];top--;
	}
	return;
}

int ru[N],dp[N];
void topu(){
	queue<int>q;
	for(int i=id+1;i<=tot;i++){
		dp[i]=siz[i];
		if(!ru[i]) q.push(i); 
	}	
	while(!q.empty()){
		int now=q.front();q.pop();
		for(int i=fi[now];~i;i=p[i].nxt){
			int to=p[i].to;
			dp[to]=max(dp[to],dp[now]+siz[to]);
			if(--ru[to]==0) q.push(to);
		}
	}
	return;
}
int main(){
	//gets(ss);
	memset(fi,-1,sizeof(fi));
//	memset(v,0,sizeof(v));
//	printf("%d",sizeof(ru)/1024/1024);
	scanf("%d%d%d",&k,&n,&m);
	id=n+m;
	for(int i=1;i<=k;i++){
		id++;
		scanf("%d%d%d",&x[i],&y[i],&tp[i]);
		mp[x[i]][y[i]]=id;
		addline(x[i],id);
		addline(n+y[i],id);
		v[id]=1;
	}
	for(int i=n+m+1;i<=id;i++){
		int xx=x[i-n-m],yy=y[i-n-m];
		if(tp[i-n-m]==1) addline(i,x[i-n-m]);
		else if(tp[i-n-m]==2) addline(i,n+y[i-n-m]);
		else{
			for(int j=1;j<=8;j++){
				int nx=xx+dx[j],ny=yy+dy[j];
				if(nx<0||nx>n||ny<0||ny>m) continue;
				if(mp[nx][ny]) addline(i,mp[nx][ny]);
			}
		}
	}
	
	tot=id;
	for(int i=1;i<=id;i++){
		if(!dfn[i]) tarjan(i);
	}
//	for(int i=n+m+1;i<=id;i++){
//		printf("i=%d col=%d siz=%d\n",i-n-m,col[i],siz[col[i]]);
//	}
	
	for(int i=1;i<=id;i++){
		int aa=col[i],bb;
		for(int j=fi[i];~j;j=p[j].nxt){
//			printf("i=%d j=%d\n",i,p[j].to);
			bb=col[p[j].to];
			if(aa!=bb) addline(aa,bb),ru[bb]++;
		}
	}
	
	topu();
	
	int ans=0;
	for(int i=id+1;i<=tot;i++) ans=max(ans,dp[i]);
	printf("%d",ans);
	return 0;
}
/*
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值