题目描述
我们已知n对夫妻的婚姻状况,称第 i 对夫妻的男方为 Bi ,女方为 Gi。
若某男 Bi 与某女 Gi 曾经交往过( i!=j ),则当某方与其配偶(即 Bi 与 Gi 或 Bj 与 Gj)感情出现问题时,他们有私奔的可能性。不妨设 Bi 和其配偶 Gi 感情不和,于是 Bi 和 Gj 旧情复燃,进而 Bj 因被戴绿帽而感到不爽,联系上了他的初恋情人 一串串的离婚事件像多米诺骨牌一般接踵而至。若在 Bi 和 Gj 离婚的前提下,这 n 个人最终依然能够结合成 n 对情侣,那么我们称婚姻 i 为不安全的,否则婚姻 i 就是安全的。
给定所需信息,你的任务是判断每对婚姻是否安全。
解析
考虑把边连成夫妻边和情侣边
那么我们的夫妻离婚后,假设从Bi 开始走,按照夫妻边和情侣边交替的顺序走回了自己,那么这个婚姻就是不安全的
所以我们把夫妻从男向女连边,情侣从女向男连边,最后判环即可
判环的方法我们可以使用tarjan缩点,夫妻若在同一个强连通分量,就是不安全的
代码
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N=4e6+2e5+100;
const int M=3e5+100;
int n,m,k;
int x[M],y[M],tp[M],v[N];
map<int,map<int,int> >mp;//1-n:行 n+1-n+m:列
int dx[9]={0,-1,-1,-1,0,0,1,1,1};
int dy[9]={0,-1,0,1,-1,1,-1,0,1};
struct node{
int to,nxt;
}p[N];
int cnt=-1,fi[N];
void addline(int x,int y){
// printf(" add:x=%d y=%d\n",x,y);
p[++cnt]=(node){y,fi[x]};
fi[x]=cnt;
}
int id;
int dfn[N],low[N],col[N],siz[N],tot,tim,zhan[N],top;
void tarjan(int x){
dfn[x]=low[x]=++tim;
zhan[++top]=x;
for(int i=fi[x];~i;i=p[i].nxt){
int to=p[i].to;
if(!dfn[to]){
tarjan(to);
low[x]=min(low[x],low[to]);
}
else if(!col[to]) low[x]=min(low[x],dfn[to]);
}
if(dfn[x]==low[x]){
tot++;
while(zhan[top]!=x){
siz[tot]+=v[zhan[top]];
col[zhan[top--]]=tot;
}
col[x]=tot;
siz[tot]+=v[x];top--;
}
return;
}
int ru[N],dp[N];
void topu(){
queue<int>q;
for(int i=id+1;i<=tot;i++){
dp[i]=siz[i];
if(!ru[i]) q.push(i);
}
while(!q.empty()){
int now=q.front();q.pop();
for(int i=fi[now];~i;i=p[i].nxt){
int to=p[i].to;
dp[to]=max(dp[to],dp[now]+siz[to]);
if(--ru[to]==0) q.push(to);
}
}
return;
}
int main(){
//gets(ss);
memset(fi,-1,sizeof(fi));
// memset(v,0,sizeof(v));
// printf("%d",sizeof(ru)/1024/1024);
scanf("%d%d%d",&k,&n,&m);
id=n+m;
for(int i=1;i<=k;i++){
id++;
scanf("%d%d%d",&x[i],&y[i],&tp[i]);
mp[x[i]][y[i]]=id;
addline(x[i],id);
addline(n+y[i],id);
v[id]=1;
}
for(int i=n+m+1;i<=id;i++){
int xx=x[i-n-m],yy=y[i-n-m];
if(tp[i-n-m]==1) addline(i,x[i-n-m]);
else if(tp[i-n-m]==2) addline(i,n+y[i-n-m]);
else{
for(int j=1;j<=8;j++){
int nx=xx+dx[j],ny=yy+dy[j];
if(nx<0||nx>n||ny<0||ny>m) continue;
if(mp[nx][ny]) addline(i,mp[nx][ny]);
}
}
}
tot=id;
for(int i=1;i<=id;i++){
if(!dfn[i]) tarjan(i);
}
// for(int i=n+m+1;i<=id;i++){
// printf("i=%d col=%d siz=%d\n",i-n-m,col[i],siz[col[i]]);
// }
for(int i=1;i<=id;i++){
int aa=col[i],bb;
for(int j=fi[i];~j;j=p[j].nxt){
// printf("i=%d j=%d\n",i,p[j].to);
bb=col[p[j].to];
if(aa!=bb) addline(aa,bb),ru[bb]++;
}
}
topu();
int ans=0;
for(int i=id+1;i<=tot;i++) ans=max(ans,dp[i]);
printf("%d",ans);
return 0;
}
/*
*/