文章目录
前言
750AB是水题.
749A小清新也比较水但有一点细节
749B经典的那种需要稍微想想但不难的图论蓝题
749C是裹着图论的贪心题
749D的预处理是魔法操作之前没有见过(据说还可以暴力FWT?)
749E大式子题我直接弃疗
CF450A Jzzhu and Children
Description \text{Description} Description
n
n
n 个孩子排成队,每个孩子有一个需求
a
i
a_i
ai.
每次给队首的孩子
m
m
m 个糖果,如果还没有满足需求,该孩子就回到队尾,否则就离开.
求最后一个离开的是谁.
Solution \text{Solution} Solution
水题,
⌈
a
i
n
⌉
\lceil \dfrac{a_i}{n}\rceil
⌈nai⌉ 求出每个孩子需要几轮,然后取一个轮数最大即可.
同一轮数取编号最大.
Code \text{Code} Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=1050;
const double eps=1e-10;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m;
int a[105];
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=read();m=read();
for(int i=1;i<=n;i++) a[i]=read();
int mx=0,id=0;
for(int i=1;i<=n;i++){
int o=(a[i]+m-1)/m;
if(o>=mx){
mx=o;id=i;
}
}
printf("%d\n",id);
return 0;
}
/*
3 3
tsy
*/
CF450B Jzzhu and Sequences
Description \text{Description} Description
有一个数列
f
i
f_i
fi,给出
f
1
,
f
2
f_1,f_2
f1,f2,对于
i
>
2
i>2
i>2,满足
f
i
=
f
i
−
1
+
f
i
+
1
f_i=f_{i-1}+f_{i+1}
fi=fi−1+fi+1.
求数列的第
n
n
n 项.
n
≤
1
0
9
n\le10^9
n≤109
Solution \text{Solution} Solution
移项:
f
i
+
1
=
f
i
−
f
i
−
1
f_{i+1}=f_{i}-f_{i-1}
fi+1=fi−fi−1.
矩阵乘法即可.
Code \text{Code} Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=1050;
const int mod=1e9+7;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m;
struct matrix{
ll a[3][3];
int x,y;
matrix(int xx,int yy):x(xx),y(yy){memset(a,0,sizeof(a));}
matrix() {memset(a,0,sizeof(a));}
};
matrix mul(matrix u,matrix v){
matrix res(u.x,v.y);
for(int k=1;k<=u.y;k++){
for(int i=1;i<=u.x;i++){
for(int j=1;j<=v.y;j++) (res.a[i][j]+=u.a[i][k]*v.a[k][j])%=mod;
}
}
return res;
}
matrix ksm(matrix o,int k){
matrix res(2,2);res.a[1][1]=res.a[2][2]=1;
while(k){
if(k&1) res=mul(res,o);
o=mul(o,o);
k>>=1;
}
return res;
}
matrix tr,ans;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
ans.a[1][2]=(read()+mod)%mod;ans.a[1][1]=(read()+mod)%mod;
ans.x=1;ans.y=2;
n=read();
if(n<=2){
printf("%lld\n",ans.a[1][3-n]);return 0;
}
tr.x=tr.y=2;
tr.a[1][1]=1;tr.a[1][2]=1;tr.a[2][1]=mod-1;tr.a[2][2]=0;
ans=mul(ans,ksm(tr,n-2));
printf("%lld\n",ans.a[1][1]);
return 0;
}
/*
3 3
tsy
*/
CF449A Jzzhu and Chocolate
Description \text{Description} Description
给出一个 N × M N \times M N×M 的矩阵,给 K K K 个操作,每次操作可以横/竖切割矩阵,求 K K K 次切割,最大化最小块的面积.
Solution \text{Solution} Solution
显然要尽可能平均的切.
那么答案就是
⌊
n
x
⌋
×
⌊
m
k
+
2
−
x
⌋
\lfloor \dfrac{n}{x}\rfloor \times \lfloor \dfrac{m}{k+2-x}\rfloor
⌊xn⌋×⌊k+2−xm⌋.
⌊
n
x
⌋
\lfloor \dfrac{n}{x}\rfloor
⌊xn⌋ 只有
O
(
n
)
O(\sqrt n)
O(n) 中取值,整除分块枚举这些值,然后贪心的让
x
x
x 尽可能的大即可.
需要开 longlong.
细节上,当
k
+
2
−
x
≤
0
k+2-x\le0
k+2−x≤0 时,要当成
1
1
1 处理.
Code \text{Code} Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=1050;
const int mod=1e9+7;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m,k;
ll ans;
inline void check(int a){
int b=k+2-a;
if(b>m) return;
if(b<=0) b=1;
ans=max(ans,1ll*(n/a)*(m/b));
return;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=read();m=read();k=read();
if(n+m<k+2){
printf("-1");return 0;
}
for(int i=1;i<=n;){
check(n/(n/i));i=n/(n/i)+1;
}
for(int i=1;i*i<=n;i++){
if(n%i) continue;
check(i);check(n/i);
}
printf("%lld\n",ans);
return 0;
}
/*
3 3
tsy
*/
CF449B Jzzhu and Cities
Description \text{Description} Description
n n n 个点, m m m 条带权边的无向图,另外还有 k k k 条特殊边,每条边连接 1 1 1 和 i i i 。 问最多可以删除这 k k k 条边中的多少条,使得每个点到 1 1 1 的最短距离不变.
Solution \text{Solution} Solution
我的做法是开两个堆,一个堆是 Dijkstra 正常用的堆,第二个堆存所有特殊边,优先从 dij 的堆转移即可.
题解的方法是直接维护最短路的条数,感觉更加直观.
Solution \text{Solution} Solution
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=3e5+100;
const int mod=1e9+7;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m,k;
struct node{
int to,nxt,w;
}p[N<<1];
int fi[N],cnt;
inline void addline(int x,int y,int w){
p[++cnt]=(node){y,fi[x],w};fi[x]=cnt;
return;
}
struct edge{
int id,val;
bool operator < (const edge y)const{return val>y.val;}
};
priority_queue<edge>Q;
#define pr pair<ll,int>
#define mkp make_pair
priority_queue<pr,vector<pr>,greater<pr> >q;
ll dis[N];
bool vis[N];
int ans;
void dij(){
memset(dis,0x3f,sizeof(dis));
q.push(mkp(0,1));dis[1]=0;
while(!q.empty()||!Q.empty()){
int now;
if(q.empty()||(!Q.empty()&&Q.top().val<q.top().first)){
now=Q.top().id;int val=Q.top().val;Q.pop();
if(vis[now]) continue;
assert(dis[now]>val);
dis[now]=val;++ans;
}
else{now=q.top().second;q.pop();if(vis[now]) continue;}
vis[now]=1;
for(int i=fi[now];~i;i=p[i].nxt){
int to=p[i].to;
if(dis[to]>dis[now]+p[i].w){
dis[to]=dis[now]+p[i].w;
q.push(mkp(dis[to],to));
}
}
}
return;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
memset(fi,-1,sizeof(fi));
n=read();m=read();k=read();
for(int i=1;i<=m;i++){
int x=read(),y=read(),w=read();
addline(x,y,w);addline(y,x,w);
}
for(int i=1;i<=k;i++){
edge o={(int)read(),(int)read()};Q.push(o);
}
dij();
printf("%d\n",k-ans);
return 0;
}
/*
3 3
tsy
*/
CF449C Jzzhu and Apples
Description \text{Description} Description
给出正整数 n n n,你要把 1 − n 1-n 1−n 之间的正整数分成尽可能多组,使得每一组两个数的最大公约数大于1;输出能分成最多组的个数,并按任意顺序输出每组的两个数.
Solution \text{Solution} Solution
朴素做法可以想到枚举
g
c
d
gcd
gcd 把所有的倍数尽可能的配对.
考虑为什么这样随便选会不优.
就是当某次配对落单的最后也没有配对,但是如果选择其他某个元素落单,后面却可以配对.
所以我们应该尽可能的选取后面容易配对的.
那么我们每次就令
2
×
g
2\times g
2×g 配对,最后在
g
=
2
g=2
g=2 的时候全都配对就行了.
这样如果还有落单的,说明这些待定的是奇数个,那么肯定就会有落单的,不可能更优了.
Code \text{Code} Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=1e5+100;
const int mod=1e9+7;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m,k;
int q[N],st,ed;
bool vis[N],jd[N];
int x[N],y[N],tot;
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=read();
for(int i=2;i<=n;i++){
if(jd[i]) continue;
for(int j=i+i;j<=n;j+=i) jd[j]=1;
}
for(int i=n;i>=2;i--){
if(jd[i]) continue;
st=1;ed=0;
for(int j=i;j<=n;j+=i){
if(!vis[j]) q[++ed]=j;
}
if(ed&1) swap(q[2],q[ed]);
while(st<ed){
++tot;x[tot]=q[st];vis[q[st++]]=1;
y[tot]=q[st];vis[q[st++]]=1;
}
}
printf("%d\n",tot);
for(int i=1;i<=tot;i++) printf("%d %d\n",x[i],y[i]);
return 0;
}
/*
3 3
tsy
*/
CF449D Jzzhu and Numbers
Description \text{Description} Description
给出一个序列
a
1...
n
a_{1...n}
a1...n,求元素按位与结果等于
0
0
0 的非空子集选取方案个数.
n
≤
1
0
6
,
a
i
≤
1
0
6
n\le 10^6,a_i\le 10^6
n≤106,ai≤106.
Solution \text{Solution} Solution
神奇的题.
容易想到容斥,设
r
e
s
i
res_i
resi 为与运算后至少有一个
1
1
1 的方案数.
那么答案就是:
a
n
s
=
r
e
s
0
−
r
e
s
1
+
r
e
s
2
.
.
.
ans=res_0-res_1+res_2...
ans=res0−res1+res2...
但
r
e
s
x
res_x
resx 的值不易求解,所以转而考虑求
f
x
f_x
fx 表示与运算后结果
w
w
w 满足
w
&
x
=
x
w\&x=x
w&x=x 的方案数.
若有
n
u
m
x
num_x
numx 个
a
i
a_i
ai 满足
a
i
&
x
=
x
a_i\&x=x
ai&x=x ,那么就有
n
u
m
x
=
2
n
u
m
x
−
1
num_x=2^{num_x}-1
numx=2numx−1
也就是只能在这
n
u
m
x
num_x
numx 个数里选,且不能都不选.
那么关键就是求出
n
u
m
x
num_x
numx.
首先,对于每个
a
i
a_i
ai,令
n
u
m
a
i
+
+
num_{a_i}++
numai++.
然后,按位枚举
k
k
k ,然后若
x
x
x 的第
k
k
k 位是
1
1
1 ,就令
n
u
m
x
(
1
<
<
(
k
−
1
)
)
←
n
u
m
x
num_{x^(1<<(k-1))}\gets num_x
numx(1<<(k−1))←numx.(换句话说就是转移到把第
k
k
k 位扣掉后的数.
为什么这样是对的?
首先,这样转移的显然都是合法元素,且不会遗漏.
关键就是为什么这样不会算重.
因为对于每个数对
(
x
,
y
)
,
x
&
y
=
x
(x,y),x\&y=x
(x,y),x&y=x,
n
u
m
y
→
n
u
m
x
num_y\to num_x
numy→numx 的转移路径是唯一的.
比如说
01101
→
00100
01101\to00100
01101→00100,就会且只会在枚举第
1
1
1 位时
01101
→
01100
01101\to 01100
01101→01100,再在枚举第
4
4
4 位时
01100
→
00100
01100\to 00100
01100→00100.
Code \text{Code} Code
#include<bits/stdc++.h>
using namespace std;
#define ll long long
//#define double long double
#define debug(...) fprintf(stderr,__VA_ARGS__)
const int N=2e6+100;
const int mod=1e9+7;
inline ll read(){
ll x(0),f(1);char c=getchar();
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
return x*f;
}
int n,m,k;
int a[N],mi[25],f[N],bit[N];
ll ksm(ll x,ll k){
ll res(1);
while(k){
if(k&1) res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
n=read();
for(int i=1;i<=n;i++) a[i]=read(),f[a[i]]++;
mi[0]=1;
for(int i=1;i<=20;i++) mi[i]=mi[i-1]<<1;
for(int j=20;j>=0;j--){
for(int i=0;i<mi[20];i++){
if(i&mi[j]) f[i^mi[j]]+=f[i];
}
}
for(int i=1;i<mi[20];i++) bit[i]=bit[i-(i&-i)]+1;
ll ans(0);
for(int i=0;i<mi[20];i++){
f[i]=(ksm(2,f[i])+mod-1)%mod;
if(bit[i]&1) ans+=mod-f[i];
else ans+=f[i];
ans%=mod;
}
printf("%lld\n",ans);
return 0;
}
/*
3 3
tsy
*/