洛谷P4463:calc(dp、拉格朗日插值)

Solution \text{Solution} Solution

神奇题目。
首先可以强制所有的数递增,最后的答案乘一个 n ! n! n! 即可。
d p i , j dp_{i,j} dpi,j 表示在 [ 1 , j ] [1,j] [1,j] 的值域选了 i i i 个数的答案,不难写出 dp 转移:
d p i , j = d p i − 1 , j − 1 × j + d p i , j − 1 dp_{i,j}=dp_{i-1,j-1}\times j+dp_{i,j-1} dpi,j=dpi1,j1×j+dpi,j1
答案就是 d p n , k dp_{n,k} dpn,k
直接暴力做是 O ( n k ) O(nk) O(nk) 的,无法通过。

考虑使用拉格朗日插值优化。
既然要用拉格朗日插值,关键就在与证明 d p n , k dp_{n,k} dpn,k 是一个以 k k k 为自变量的 f n f_n fn 次多项式。

首先又一个较为显然的结论,若 g ( x ) g(x) g(x) 是一个 k k k 次多项式,那么它的差分 g ( x ) − g ( x − 1 ) g(x)-g(x-1) g(x)g(x1) 就是一个 k − 1 k-1 k1 次多项式。
那么回到刚才的转移式,它也可以写成:
d p i , j − d p i , j − 1 = d p i − 1 , j − 1 × j dp_{i,j}-dp_{i,j-1}=dp_{i-1,j-1}\times j dpi,jdpi,j1=dpi1,j1×j
考虑多项式次数,也就是:
f n − 1 = f n − 1 + 1 f_n-1=f_{n-1}+1 fn1=fn1+1
也就是说 f n f_n fn 是一个公差为二的等差数列。
又因为有: d p n , 0 = 0 , f 0 = 0 dp_{n,0}=0,f_0=0 dpn,0=0,f0=0,所以就能得到:
f n = 2 n f_n=2n fn=2n
O ( n 2 ) O(n^2) O(n2) 暴力求出前 n n n 项插值即可,连续值域插值可以前缀和优化到线性。
总复杂度 O ( n 2 ) O(n^2) O(n2)

Code \text{Code} Code

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
inline ll read(){
  ll x(0),f(1);char c=getchar();
  while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
  while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
  return x*f;
}


const int N=2050;
int mod;
ll n,m;
inline ll ksm(ll x,ll k){
  ll res(1);
  while(k){
    if(k&1) res=x*res%mod;
    x=x*x%mod;
    k>>=1;
  }
  return res;
}
ll x[N],y[N];
ll jc[N],suf[N],pre[N],ni[N];
ll lagrange(int n,ll *y,ll k){//consecutive
  k%=mod;
  jc[0]=1;
  for(int i=1;i<=n;i++) jc[i]=jc[i-1]*i%mod;
  ni[n]=ksm(jc[n],mod-2);
  for(int i=n-1;i>=0;i--) ni[i]=ni[i+1]*(i+1)%mod;
  pre[0]=1;
  for(int i=1;i<=n;i++) pre[i]=pre[i-1]*(k-i)%mod;
  suf[n+1]=1;
  for(int i=n;i>=1;i--) suf[i]=suf[i+1]*(k-i)%mod;
  ll res(0);
  for(int i=1;i<=n;i++){
    ll add=y[i]*pre[i-1]%mod*suf[i+1]%mod*ni[i-1]%mod*ni[n-i]%mod;
    if((n-i)&1) add=mod-add;
    (res+=add)%=mod;
  }
  return res;
}
ll dp[505][1505];
signed main(){
#ifndef ONLINE_JUDGE
  freopen("a.in","r",stdin);
  freopen("a.out","w",stdout);
#endif
  m=read();n=read();mod=read();
  for(int i=0;i<=2*n+1;i++) dp[0][i]=1;
  for(int i=1;i<=n;i++){
    for(int j=1;j<=n*2+1;j++){
      dp[i][j]=(dp[i][j-1]+dp[i-1][j-1]*j)%mod;
    }
  }
  for(int i=1;i<=2*n+1;i++){
    y[i]=dp[n][i];
  }
  ll res=lagrange(2*n+1,y,m);
  printf("%lld\n",res*jc[n]%mod);
  return 0;
}
/*
*/

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值