KMP 算法是一个快速查找匹配串的算法
适用于解决的问题是:如何在原字符串中找到匹配的字符串
对比常用逻辑与KMP解法:
常用逻辑:
1. 将原串的指针移动至本次「发起点」的下一个位置。匹配串的指针移动至起始位置。
2. 尝试匹配,发现对不上,原串的指针会一直往后移动,直到能够与匹配串对上位置。
对于常用逻辑来说,一旦匹配失败,将会将原串指针调整至下一个「发起点」,匹配串的指针调整至起始位置,然后重新尝试匹配。
KMP解法:
1.首先匹配串会检查之前已经匹配成功的部分中里是否存在相同的「前缀」和「后缀」。如果存在,则跳转到「前缀」的下一个位置继续往下匹配。
2.跳转到下一匹配位置后,尝试匹配,发现两个指针的字符对不上,并且此时匹配串指针前面不存在相同的「前缀」和「后缀」,这时候只能回到匹配串的起始位置重新开始。
class Solution {
// KMP 算法
// ss: 原串(string) pp: 匹配串(pattern)
public int strStr(String ss, String pp) {
if (pp.isEmpty()) return 0;
// 分别读取原串和匹配串的长度
int n = ss.length(), m = pp.length();
// 原串和匹配串前面都加空格,使其下标从 1 开始
ss = " " + ss;
pp = " " + pp;
char[] s = ss.toCharArray();
char[] p = pp.toCharArray();
// 构建 next 数组,数组长度为匹配串的长度(next 数组是和匹配串相关的)
int[] next = new int[m + 1];
// 构造过程 i = 2,j = 0 开始,i 小于等于匹配串长度 【构造 i 从 2 开始】
for (int i = 2, j = 0; i <= m; i++) {
// 匹配不成功的话,j = next(j)
while (j > 0 && p[i] != p[j + 1]) j = next[j];
// 匹配成功的话,先让 j++
if (p[i] == p[j + 1]) j++;
// 更新 next[i],结束本次循环,i++
next[i] = j;
}
// 匹配过程,i = 1,j = 0 开始,i 小于等于原串长度 【匹配 i 从 1 开始】
for (int i = 1, j = 0; i <= n; i++) {
// 匹配不成功 j = next(j)
while (j > 0 && s[i] != p[j + 1]) j = next[j];
// 匹配成功的话,先让 j++,结束本次循环后 i++
if (s[i] == p[j + 1]) j++;
// 整一段匹配成功,直接返回下标
if (j == m) return i - m;
}
return -1;
}
}
题目:LeetCode28:找出字符串中第一个匹配字符串的下标