算法学习笔记:概率/期望 DP

算法学习笔记:概率/期望 DP

1. 前言

概率/期望 DP,是一种 DP,用来计算概率或者是期望。

其实我认为这种 DP 就是计算期望的,毕竟概率可以看成代价为 1 的期望。

没有学过期望的读者可以看看这篇文章:算法学习笔记:概率与期望

而概率/期望 DP,最关键的就是期望方程。

下面看一道例题。

2. 例题

CF1265E Beautiful Mirrors

以这题为例,详细讲解期望 DP 的一般套路。

为了方便,下面直接认为 p i p_i pi 就是概率。

首先设状态。

期望 DP 设状态: f [ i ] = 从 1 到 i 的 期 望 ( 天 数 / 步 数 / 代 价 / . . . ) f[i]=从 1 到 i 的期望(天数/步数/代价/...) f[i]=1i(///...)

对于这道题, f i f_i fi 为从第一面镜子到第 i i i 面镜子都高兴的期望天数。

期望 DP 的转移:使用 f i − 1 , f i f_{i-1},f_i fi1,fi 列期望方程。

列期望方程是重点!不能列错! 还有不要解错

  1. i i i 天询问失败,从头开始。
    此时概率为 1 − p i 1-p_i 1pi,消耗天数为 f i − 1 + 1 + f i f_{i-1}+1+f_i fi1+1+fi,于是概率乘代价为 ( 1 − p i ) ( f i − 1 + 1 + f i ) (1-p_i)(f_{i-1}+1+f_i) (1pi)(fi1+1+fi)
  2. i i i 天询问成功。
    此时概率为 p i p_i pi,消耗天数 f i − 1 + 1 f_{i-1}+1 fi1+1,于是概率乘代价为 p i ( f i − 1 + 1 ) p_i(f_{i-1}+1) pi(fi1+1)

综上,有 f i = ( 1 − p i ) ( f i − 1 + 1 + f i ) + p i ( f i − 1 + 1 ) f_i=(1-p_i)(f_{i-1}+1+f_i)+p_i(f_{i-1}+1) fi=(1pi)(fi1+1+fi)+pi(fi1+1)

然而 p i p_i pi 只是概率,真正代码中还需要除以 100 才行。

除以 100 之后最后解得 f i = 100 ( f i − 1 + 1 ) p i f_i=\dfrac{100(f_{i-1}+1)}{p_i} fi=pi100(fi1+1),线性递推即可,不要忘记逆元。

总结一下期望 DP 的一般套路:

  1. 设状态 f i f_i fi 为从 1 到 i i i 的期望天数/步数/…
  2. 列出关于 f i − 1 f_{i-1} fi1 f i f_i fi 的期望方程。
  3. 解方程,然后线性递推。
  4. 如果有特别的初值要加上。

几个注意点:

  1. 期望方程不要列错,一定要考虑到每一种情况。
  2. 方程不要解错
  3. 初值不能漏。

例题的代码:

#include <bits/stdc++.h>
using namespace std;

typedef long long LL;
const int MAXN = 2e5 + 10, P = 998244353;
int n, p[MAXN];
LL f[MAXN];

int read()
{
	int sum = 0, fh = 1; char ch = getchar();
	while (ch < '0' || ch > '9') {if (ch == '-') fh = -1; ch = getchar();}
	while (ch >= '0' && ch <= '9') {sum = (sum << 3) + (sum << 1) + (ch ^ 48); ch = getchar();}
	return sum * fh;
}

LL ksm(LL a, LL b)
{
	LL ans = 1 % P;
	for (; b; b >>= 1)
	{
		if (b & 1) ans = ans * a % P;
		a = a * a % P;
	}
	return ans;
}

int main()
{
	n = read();
	for (int i = 1; i <= n; ++i) p[i] = read();
	for (int i = 1; i <= n; ++i) f[i] = 100ll * (f[i - 1] + 1) % P * ksm(p[i], P - 2) % P;
	printf("%lld\n", f[n]);
	return 0;
}

3. 练习题

概率/期望 DP 的练习题请前往 DP 算法总结&专题训练1(概率/期望 DP & 数位 DP)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值