矩阵是个什么东西呢?可以理解为解方程组。解方程组是矩阵和向量相乘。如果我们同时解多个方程组,那就是矩阵和矩阵相乘了(虽然我们通常不会同时解多个方程组)。解方程组是我们最熟知的矩阵的应用。但矩阵的应用有很多,远远不止解方程组一种,而且矩阵和矩阵相乘,往往是有其他的意义的。那么矩阵和矩阵相乘的意义是什么呢?从某种程度上可以理解为资源的整合和再创造。当然,我们有各种各样的理解,这个只是其中之一。我下面讲的这些例子大多数都不是解方程组,解方程组的各个行的地位是等同的,所以我们可以有行变换。但下面这些例子中,大多数是每行都有不同意义,所以是没法进行行变换的。
矩阵是什么
1.“大号”的数字
矩阵可以理解为数据的扩展:它是一种“大号”的数据。比如省是大号的市,联合国是大号的国家,矩阵,是大号的数字。我们用数字可以表示一个可以量化的东西,矩阵也可以。我们可以用未知数表示一个不知道的数字,矩阵也可以。未知数可以列算式解方程,矩阵也可以。比如我们解3x=9, x=3,矩阵是类似的:Ax=b,这也是可以解的。
2.一个东西的多个属性
食物有价格、是否易于保存、体积等属性,所以我们可以对食物的各个属性进行描述。把不同食物作为行,把食物的不同属性作为列,就是一个矩阵。
员工有年龄、绩效、工资等属性,所以我们可以对不同的员工的属性进行描述。把员工作为行,把不同属性作为列,就是一个矩阵。
可以理解为一个样本量的几个不同的属性。
3.一个类型的同样的几个东西
其实2已经提到了这个点:不同的食物,不同的员工,都是可以作为行(矩阵的一个维度)的。
可以理解为把几个样本堆在一起。
4.空间中的几何体、空间中的相互作用
一个三维的几何体可以用矩阵表示,几个力对一个物体的作用可以分解为xyz轴上的分量,也可以用矩阵表示。
5.几个东西之间的相互关系
网络中,每两个节点之间有没有连接,连接的权重是多少,这个是可以用矩阵表示的。第i行第j列就是第i个节点和第j个节点之间的连接。
一个东西有多个不同的属性,协方差矩阵是这些属性之间的相互关系:正相关/负相关/线性无关,都可以在协方差矩阵上有所体现。第i行第j列是第i个属性和第j个属性之间的协方差。
6.自身的变化
空间中,把一个物体旋转、缩放、平移、投影,都可以用矩阵来表示。
两个城市之间有人口流动,每年城市A都有20%的人口进入城市B,城市B有10%的人口进入城市A。如果把两个城市看做一个整体的话,那么这个整体每年都是有所变化的。
7.状态转移
输入一串信号,输出一串信号。输入一组原材料,输出一组成品。输入一组参数,输出一个结果。从输入到输出的转化,就是矩阵。
8.对公式(规律)的扩展
之前的公式(规律)只对一个变量成立,那么,它也可以对多个变量成立。
WRITE-BUG研发团队衷心希望【WRITE-BUG数字空间】可以给每位同学一个属于自己的秘密空间,同时祝愿大家在“公开圈子”世界里,遇见志同道合的伙伴们,因为我们与大家一样,都曾孤独前行着。