概率论和线代复习

1.大数定理及中心极限定理

①       大数定理是叙述随机变量序列的前一些项的算术平均值在某种条件下收敛到这些项的均值的算术平均值。

        弱大数定理, 数据多,概率以某种概率趋于

②     中心极限定理是确定在什么条件下,大量随机变量之和的分布逼近于正态分布

李雅普诺夫定理

线性代数

8.10

※矩阵秩的定义:A中最高阶非零子式的阶数称为矩阵A的秩,矩阵秩的本质就是组成该矩阵线性无关的向量的个数.

r(A)=n等价于|A|不等于0等价于A可逆.

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A。有以下几种情况:

(1) 设A , B 至少有一个为零矩阵,则A , B 可交换;

(2) 设A , B 至少有一个为单位矩阵, 则A , B可交换;

(3) 设A , B 至少有一个为数量矩阵, 则A , B可交换;

(4) 设A , B 均为对角矩阵,则A , B 可交换;

(5) 设A , B 均为准对角矩阵(准对角矩阵是分块矩阵概念下的一种矩阵。即除去主对角线上分块矩阵不为零矩阵外,其余分块矩阵均为零矩阵),且对角线上的子块均可交换,则A , B 可交换;

矩阵乘法不满足交换律的现实意义是什么? - 知乎 (zhihu.com)

矩阵的可交换性有什么几何意义吗? - 知乎 (zhihu.com)

※矩阵可逆的充要条件是它的行列式不为0.

※初等变换

(1)一个非零常数乘矩阵的某一行(列)

(2)互换矩阵中某两行(列)的位置

(3)将矩阵中的某一行(列)的k倍加到另一行(列)上

对n阶矩阵进行初等行变换,相当于矩阵A左乘相应的初等矩阵,同样,对A进行初等列变换,相当于矩阵A右乘相应的初等矩阵.
※正交矩阵

8.21

※非满秩等价于奇异等价于不可逆等价于行列式为0

线性方程式Ax=b

线性方程也可写成x1*a1+x2*a2+x3*a3=b; a1,a2,a3分别为3*1的矩阵,为A的某一列,可看成是矩1,矩2,矩3,b为矩4。

现在出现一个问题是:前提:当矩1+矩2+矩3=矩4,(注意:不包含系数),不管xyz与矩怎么线性组合,b一定存在在矩阵1、矩阵2、矩阵3三者构成的平面内,(注意:没错,是平面,但是,是在三维空间中平面。)。我们进一步说,这个线性组合有解:结果b(矩阵4),因为有解,且只能在平面——>它是非奇异矩阵,可逆。(这个非奇异矩阵是A)

但是,无解呢,也就是b这个向量不在平面内,那就不能称为b了呀。假设,假设是这样的,出现矩阵1+矩阵2=矩阵3,即是:矩阵3这个维度可被矩1和矩2合力构成,那么我们认为矩阵3没法存在有单独的一个维度,它是能由它人的维度构成,被包含在它人(矩12)的维度中。若b这个向量不在矩12的线性组合的平面内,那就不能称为b了,也即存在无解,进一步的,我们认为,在三维空间中,有很多向量 不在矩1和矩2构成的平面里。即认为这个 平面 是奇异矩阵。认为 这些平面外的无法被矩12进行线性组合的向量对于线性方程而言,是 无解 的,是存在在线性方程矩阵1和2构成的面之外的向量。

注意它的解也不是在平面之外,它,没有解。而实际不是空间中毫无向量,而是向量不存在在平面上,平面外的都叫“无解”,这指对于这个矩阵的无解)这个“消失了,好神奇啊”的源头罪魁祸首是一个“变换矩阵”影响的,即认为它是一个“奇异矩阵”。这个变换后的空间是“奇异矩阵”变换来的。

8.21

※线性相关,线性无关概念

※极大线性无关组,等价向量组,向量组的秩

 

※矩阵A和B等价,意味着A和B的秩相同。

P26的习题二、p47习题三未做,有时间可以做一下。

极大线性无关组就是原向量组的代表,代表的个数就是独立信息的个数,它就是矩阵的秩。秩就是独立信息的个数,就是代表中有这几个独立信息就足够表示其他所有信息了。向量和向量之间的关系,要么线性相关,要么线性无关。

※m个n维向量线性相关的充要条件是齐次线性方程组只有非零解。

   如果n<m,即方程个数小于未知数个数,线性方程组求解时必有自由未知量,它的值可以任意确定,因此方程必有非零解。因此任何n+1个n维向量都是线性相关的。所以在n维空间中,任何一个线性相关的向量组最多只能含n个向量。

  A为系数矩阵 n*m n个m维向量线性相关  等价于 方阵 |A|=|a1,a2,a3...,an|=0   等价于   Ax=0有非零解。 等价于 rank(A)<n

※以少表多,多的相关

   向量组部分线性相关,整体线性相关;整体线性无关,部分线性无关。

8.22

※方程组问题就是向量组问题,它们是一个问题的两种表现形式,其本质一样。求解线性方程组,就是对增广矩阵作初等行变换,化成行阶梯形矩阵,然后求解。

齐次方程

 非齐次方程

※特征值的性质

A的行列式=A的特征值的联乘

特征向量的性质 

1.k重特征值λ至多只有k个线性无关的特征向量

2.若w1,w2为不同特征值的特征向量,则w1,w2线性无关。

3.若w1,w2是同一个特征值的特征向量,则w1和w2的线性组合仍是该特征值的特征向量。

※相似矩阵的定义和性质

A和B均为方阵,P方阵且可逆,P-1AP=B 则A~B 性质:1.r(A)=r(B),2.|A|=|B|,3.|λE-A|=|λE-B|,4.A和B具有相同的特征值

一个矩阵可相似对角化的充要条件为①A有n个线性无关的特征向量。 ②A对应于每ki重特征值有ki个线性无关的特征向量。 其中①和②满足其一即可。

※正交向量和正交矩阵

向量正交 a*b=0  矩阵正交AT*A=E A是正交矩阵等价于A的行(列)向量组是标准正交向量组。

正交矩阵的Q-1=QT。

8.23

※判别一个矩阵是否相似于对角矩阵的步骤如下:  类似于现控里的对角阵和约当阵

 

※二次型可表示为 

f(x)=x^TAx

其中A必须为对称矩阵,即AT=A。规定二次型的矩阵必须是对称矩阵,则代表二次型的矩阵就是唯一的了,方便研究。否则,由于二次型函数的某些项可以拆开,则该二次型函数的表示方式有变化,不利于研究讨论。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值