本文实现了对二叉树的递归遍历和非递归遍历,当然还包括了一些栈操作。
二叉树的遍历本质上其实就是入栈出栈的问题,递归算法简单且容易理解,但是效率始终是个问题。非递归算法可以清楚的知道每步实现的细节,但是乍一看不想递归算法那么好理解,各有各的好处吧。接下来根据下图讲讲树的遍历。
1、先序遍历:先序遍历是先输出根节点,再输出左子树,最后输出右子树。上图的先序遍历结果就是:ABCDEF
2、中序遍历:中序遍历是先输出左子树,再输出根节点,最后输出右子树。上图的中序遍历结果就是:CBDAEF
3、后序遍历:后序遍历是先输出左子树,再输出右子树,最后输出根节点。上图的后序遍历结果就是:CDBFEA
其中,后序遍历的非递归算法是最复杂的,我用了一个标识符isOut来表明是否需要弹出打印。因为只有当节点的左右子树都打印后该节点 才能弹出栈打印,所以标识isOut为1时打印,isOut初始值为0,这主要是为了处理非叶子节点。由后序遍历的原理决定,左右子树都被打印该节点才能打印,所以该节点肯定会被访问2次,第一次的时候不要打印,第二次打印完右子树的时候打印。叶子节点打印完后将isOut置为1。(纯粹是自己想的,应该还有逻辑更简单的算法)
isOut处理具体如下:
- 所有节点入栈的时候初始化为0;
- 叶子节点打印输出后将isOut置为1;
- 非叶子节点分两种情况。如果存在左子树,则输出左子树后将isOut置为1,此时指针已获得其右子树节点;如果不存在左子树,则将isOut置为1,此时指针已获得其右子树节点;在代码中分别体现在 if ( (p->lchild) && (p->lchild->isOut == 1) ) {//如果存在左子树,并且左子树已经遍历完,则说明该节点已经入栈,不用再次Push,直接走向右子树
p->isOut = 1;
p = p->rchild;
}和 if (!StackEmpty(s))
{
GetTop(s,p);
if ( p->lchild == NULL )
p->isOut = 1; //右子树已输出,将父节点isOut置1
}; - 遇到isOut=1的时候,说明左右子树都已输出,所以该节点也出栈打印出来。
以中序遍历为例,看看栈的内容是如何变化的:
具体的代码实现如下:
- #include<stdio.h>
- #include<stdlib.h>
- #define STACKINITSIZE 100
- #define STACKINCREASESIZE 20
- typedef char ElemType;
- //树结构
- typedef struct tree
- {
- ElemType data;
- struct tree * lchild;
- struct tree * rchild;
- unsigned int isOut; //专为后序遍历设置的,0为不需要被输出,1为需要被输出
- }TreeNode,*Tree;
- //栈结构
- typedef struct stack
- {
- Tree * base;
- Tree * top;
- int stacksize;
- }Sqstack;
- /*****************栈的操作声明********************/
- //初始化栈
- void InitStack( Sqstack &s );
- //元素入栈
- void Push( Sqstack &s, Tree e );
- //获得栈顶元素
- void GetTop( Sqstack s, Tree &e );
- //弹出栈顶元素
- void Pop( Sqstack &s, Tree &e );
- //判断栈是否为空,为空返回1,否则返回0
- int StackEmpty( Sqstack s );
- /*****************栈的操作声明********************/
- /*****************树的操作声明********************/
- //创建树,以先序序列建立树
- void CreateTree(Tree &t);
- //递归先序遍历
- void PreOrder(Tree t);
- //非递归先序遍历
- void PreOrder1(Tree t);
- //递归中序遍历
- void InOrder(Tree t);
- //非递归中序遍历
- void InOrder1(Tree t);
- //递归后序遍历
- void PostOrder(Tree t);
- //非递归后序遍历
- void PostOrder1(Tree t);
- /*****************树的操作声明********************/
- int main()
- {
- Tree T;
- printf("\n按先序序列输入结点序列,'#'代表空:");
- CreateTree(T);
- printf("\n非递归先序遍历的结果:");
- PreOrder1(T);
- printf("\n递归先序遍历的结果: ");
- PreOrder(T);
- printf("\n非递归中序遍历的结果:");
- InOrder1(T);
- printf("\n递归中序遍历的结果: ");
- InOrder(T);
- printf("\n非递归后序遍历的结果:");
- PostOrder1(T);
- printf("\n递归后序遍历的结果: ");
- PostOrder(T);
- printf("\n");
- }
- /*****************栈的操作定义********************/
- //初始化栈
- void InitStack( Sqstack &s )
- {
- s.base = (Tree *)malloc(STACKINITSIZE*sizeof(Tree));
- if ( !s.base )
- {
- printf("InitStack内存分配出错\n");
- }
- s.top = s.base;
- s.stacksize = STACKINITSIZE;
- }
- //元素入栈
- void Push( Sqstack &s, Tree e )
- {
- if ( s.top - s.base >= s.stacksize )
- {
- s.base = (Tree *)realloc(s.base,(s.stacksize+STACKINCREASESIZE)*sizeof(Tree));
- if ( !s.base )
- {
- printf("Push内存分配出错\n");
- return ;
- }
- s.top = s.base + s.stacksize;
- s.stacksize += STACKINCREASESIZE;
- }
- e->isOut = 0;
- *s.top++ = e;
- }
- //获得栈顶元素
- void GetTop( Sqstack s, Tree &e )
- {
- e = *(s.top - 1);
- }
- //弹出栈顶元素
- void Pop( Sqstack &s, Tree &e )
- {
- if ( s.top == s.base )
- {
- printf("栈为空\n");
- return ;
- }
- e = *(--s.top);
- }
- //判断栈是否为空,为空返回1,否则返回0
- int StackEmpty( Sqstack s )
- {
- if ( s.top == s.base )
- return 1;
- return 0;
- }
- /*****************栈的操作定义********************/
- /*****************树的操作定义********************/
- //创建树,以先序序列建立树
- void CreateTree(Tree &t)
- {
- char ch;
- scanf("%c",&ch);
- if ( ch == '#' )
- t = NULL;
- else
- {
- t = (Tree)malloc(sizeof(TreeNode));
- if ( !t )
- {
- printf("分配内存出错!");
- return ;
- }
- t->data = ch;
- CreateTree(t->lchild);
- CreateTree(t->rchild);
- }
- }
- //递归先序遍历
- void PreOrder(Tree t)
- {
- if ( t )
- {
- printf("%c",t->data);
- PreOrder(t->lchild);
- PreOrder(t->rchild);
- }
- }
- //非递归先序遍历
- void PreOrder1(Tree t)
- {
- Tree p = t;
- Sqstack s;
- InitStack(s);
- while ( p || !StackEmpty(s) )
- {
- if ( p )
- {
- printf("%c",p->data);
- Push(s,p);
- p = p->lchild;
- }
- else
- {
- Pop(s,p);
- p = p->rchild;
- }
- }
- }
- //递归中序遍历
- void InOrder(Tree t)
- {
- if ( t )
- {
- InOrder(t->lchild);
- printf("%c",t->data);
- InOrder(t->rchild);
- }
- }
- //非递归中序遍历
- void InOrder1(Tree t)
- {
- Tree p = t;
- Sqstack s;
- InitStack(s);
- while ( p || !StackEmpty(s) )
- {
- if ( p )
- {
- Push(s,p);
- p = p->lchild;
- }
- else
- {
- Pop(s,p);
- printf("%c",p->data);
- p = p->rchild;
- }
- }
- }
- //递归后序遍历
- void PostOrder(Tree t)
- {
- if ( t )
- {
- PostOrder(t->lchild);
- PostOrder(t->rchild);
- printf("%c",t->data);
- }
- }
- //非递归后序遍历
- void PostOrder1(Tree t)
- {
- t->isOut = 0;
- Tree p = t;
- Sqstack s;
- InitStack(s);
- while ( p || !StackEmpty(s) )
- {
- if ( p )
- {
- if ( p->isOut )
- {//左右子树都已输出,则该节点也输出
- Pop(s,p);
- printf("%c",p->data);
- if (!StackEmpty(s))
- GetTop(s,p); //得到弹出节点元素的父节点
- else
- p = NULL;
- }
- else
- {
- if ( (p->lchild) && (p->lchild->isOut == 1) )
- {//如果存在左子树,并且左子树已经遍历完,则说明该节点已经入栈,不用再次Push,直接走向右子树
- p->isOut = 1;
- p = p->rchild;
- }
- else
- {
- Push(s,p);
- p = p->lchild;
- }
- }
- }
- else
- {
- if (!StackEmpty(s))
- GetTop(s,p);
- else
- p = NULL;
- if ( p->rchild )
- {
- p = p->rchild;
- }
- else
- {
- Pop(s,p);
- printf("%c",p->data);
- p->isOut = 1;
- if (!StackEmpty(s))
- {
- GetTop(s,p);
- if ( p->lchild == NULL )
- p->isOut = 1; //右子树已输出,将父节点isOut置1
- }
- else
- p = NULL;
- }
- }
- }
- }