题面:
一个n行m列的矩阵被划分成t个矩形区域,分别用数字1-t来标识,同一个区域内的元素都用同一个数字标识。如下图所示,一个6行8列的矩阵被分成8个矩形区域,分别用编号1-8标识。当两个小区域之间公用一条边时,称这两个区域相邻,例如下图中区域5的相邻区域有6个,分别为1,2,3,6,7,8,但4并不是它的相邻区域。请写一个程序找出区域k的所有相邻区域。
输入说明
输入第一行为四个整数n,m, t,k,整数之间用空格分隔。n表示矩阵行数(n<20),m表示矩阵列数(m<20),t表示矩阵被划分为t个矩形区域(0<t<50),k为其中某个区域的编号(1<=k<=t)。接下来是n行数据,每行m个整数,表示矩阵内各个元素所在的区域,整数之间用空格分隔。
输出说明
输出为一个整数,表示与k相邻的区域个数
思路:
定义一个二维数组a储存矩阵,一个一维数组count储存某元素是否在编号k的矩阵旁边。
可以直接全部遍历判断上下左右,把相邻矩阵的值改为1,思路简单。我用了自定义函数递归(确切的说是只递不归),因此先找出k矩阵左上角,然后向下向右逐个判断,可以稍微少几次判断。
代码:(第一次发文章难免有点小错,欢迎多多指正)
#include<stdio.h>
int count[51]={0},n,m,t,k;
void find(int a[][20],int i,int j){
if(i>0) if(a[i-1][j]!=k) count[a[i-1][j]]=1;//判断上方
if(j>0) if(a[i][j-1]!=k) count[a[i][j-1]]=1;//判断左方
if(i<n-1) if(a[i+1][j]==k) find(a,i+1,j); else count[a[i+1][j]]=1;//判断下方 (递归
if(j<m-1) if(a[i][j+1]==k) find(a,i,j+1); else count[a[i][j+1]]=1;//判断右方 (递归
}
int main(void){
int a[20][20],i,j,sum=0;
scanf("%d %d %d %d",&n,&m,&t,&k);
for(i=0;i<n;i++)
for(j=0;j<m;j++)
scanf("%d",&a[i][j]);//读取数据
for(j=0;j<m;j++){
for(i=0;i<n;i++){
if(a[i][j]==k){//判断要求矩阵的左上角
find(a,i,j);
break;
}
}
if(a[i][j]==k)
break;//双重循环退两次
}
for(i=1;i<=t; i++)
sum+=count[i];//计算邻接的矩阵的总数
printf("%d\n",sum);
return 0;
}