机器学习笔记:支持向量机

关键术语

支持向量(Support Vector)
支持向量机(Support Vector Mechines,SVM)
序列最小优化(Sequential Minimal Optimization,SMO)
核函数(Kernel Function)
超平面(Hyperplane)
分隔超平面(Separating hyperplane)
点到分隔面的距离为间隔(margin)

相关公式

分隔超平面的形式写成: wτx+b
这里写图片描述
要计算点A到分隔超平面的距离就必须给出点到分隔超平面的法线的长度,该值为: |wτx+b|w
当计算点到分隔面的距离并确定分割面的放置位置时,间隔通过 label(wτx+b) ,表示点到分隔面的函数间隔; label(wτx+b)1w ,表示点到分隔面的几何间隔。

如果数据点处于+1类并且离分隔超平面很远的位置时 wτx+b 会是一个很大的正数,同时 label(wτx+b) 也是一个很大的正数;
如果数据点处于-1类并且离分隔超平面很远的位置时 wτx+b 也会是一个很大的正数,同时 label(wτx+b) 也是一个很大的正数;

目标:找出分类器定义中的w和b。

所以要找到最小间隔的数据点,即支持向量,找到最小间隔的数据点,就要对该间隔最大化,表示为:

argmaxw,b{minn(label(wτx+b))1w}

令所有支持向量的 label(wτx+b) 都为1,可以通过求 w1 的最大值来得到最终解。

该问题转化为带约束条件的最优化问题,这里的约束条件就是: label(wτx+b)1.0 。对于这类优化问题,有一个非常著名的求解方法,就是拉格朗日乘子法。
因此可以将超平面写成数据点的形式:

maxa[i=1mα12i,j=1mlabel(i)label(j)aiajx(i),x(j)]

其中 x(i),x(j) 表示 x(i),x(j) 两个向量的内积。

上面大公式的约束条件为:

α0 ,和 mi=1αilabel(i)=0

数据必须是100%线性可分。

因为数据并不那么干净,引入松弛变量,来允许有些数据点可以处于分隔面的错误一侧,这样优化目标保持不变,此时新的约束条件变为:

cα0 ,和 mi=1αilabel(i)=0

c 用来控制“最大化间隔”和“保证大部分点的函数间隔小于1.0”这两个目标的权重。可以调节c来得到不同的结果。
一旦求出了所有的alpha,那么分隔超平面就可以通过这些alpha来表达。SVM的主要工作就是求解这些alpha。

SMO(Sequential Minimal Optimization)算法

目标是求出一系列的alpha和b,一旦求出这些alpha就很容易计算出权重向量w并得到分隔超平面。

SMO算法的工作原理:每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,就增大一个同时减小另一个。而“合适”必须符合以下条件:
1. 两个alpha必须在间隔边界之外;
2. 两个alpha还没有进行过区间化处理或者不在边界上。

《Mechine Learning in Action》中简化版的SMO算法代码解读:svmLiA.py

'''
Created on 2016年10月10日
支持向量机练习
@author: laizhiwen
'''
import numpy as np
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat

'''
i:第一个alpha的下标
m:所有alpha的数目
随机产生不等于输入值i的数
'''
def selectJrand(i,m):
    j=i 
    while (j==i):
        j = int(np.random.uniform(0,m))
    return j

'''
调整大于H而小于L的alpha值
'''
def clipAlpha(aj,H,L):
    if aj > H: 
        aj = H
    if L > aj:
        aj = L
    return aj

'''
dataMatIn:样本集
classLabels:每一条样本数据对应的分类集
C: 常数
toler: 容错率
maxIter:迭代次数
'''
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = np.mat(dataMatIn); 
    labelMat = np.mat(classLabels).transpose()
    b = 0
    m,n = np.shape(dataMatrix) 
    alphas = np.mat(np.zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0 #记录优化alpha值是否有效
        for i in range(m):
            #矩阵alphas,labelMat相乘得到一个m行1列矩阵,因为都是m行单列矩阵,对应位置的元素相乘重新组成一个新的m行单列矩阵
            #fXi是预测的类别,即预测的结果
            fXi = float(np.multiply(alphas,labelMat).T * (dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])  #误差 = 预测结果-真实结果,如果Ei很大就可以对alpha进行优化
            #alpha不能等于0或C。如果if中等于0和C的话,那么它们就已经在边界上了,因而不能再减小和增大,也就不能再优化
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or \
                ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):  
                j = selectJrand(i,m) #随机选择第二格alpha的值
                #fXj是第二个alpha的误差,计算方法同上
                fXj = float(np.multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy()
                alphaJold = alphas[j].copy()

                #将alpha[j]调整到0和C之间,L=H则不做改变,直接下一个;
                if (labelMat[i] != labelMat[j]):         
                    L = max(0, alphas[j] - alphas[i])         
                    H = min(C, C + alphas[j] - alphas[i])
                else:                                    
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H:
                    print("L==H")
                    continue
                #eta是alpha[j]的最优修改量
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - \
                      dataMatrix[i,:]*dataMatrix[i,:].T - \
                      dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: 
                    print("eta>=0")
                    continue #如果eta等于0则跳出本次迭代
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta #计算出新的alpha[j]
                alphas[j] = clipAlpha(alphas[j],H,L)   #调整alpha[j]

                #判断alpha[j]是否有轻微改变,是就退出本次循环进行下一次迭代
                if (abs(alphas[j] - alphaJold) < 0.00001): 
                    print("j not moving enough")
                    continue

                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])

                #给两个alpha值设置常数项b
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - \
                     labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T

                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - \
                     labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T

                if (0 < alphas[i]) and (C > alphas[i]): 
                    b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): 
                    b = b2
                else: 
                    b = (b1 + b2)/2.0

                #如果成行执行到此都没有遇到过continue语句,就已经改变了一堆alpha了
                alphaPairsChanged += 1
                print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged) )

        #判断alpha值是否做了更新,如果做了更新就将iter设置为0,继续执行程序
        if (alphaPairsChanged == 0): 
            iter += 1
        else:
            iter = 0
        print("iteration number: %d" % iter)
    return b,alphas  



dataArr,labelArr = loadDataSet('E:/4.开发书籍/machinelearninginaction/Ch06/testSet.txt')
print(labelArr)
b,alphas = smoSimple(dataArr, labelArr, 0.6, 0.001, 40)
print(b)
print(alphas[alphas>0])
for i in range(100):
    if alphas[i]>0.0:
        print(dataArr[i],labelArr[i])

至此,SMO算法的基本逻辑已经清晰。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值