机器学习第六章 支持向量机

引言

支持向量机(Support (Vector Machines ,SVM)
序列最小优化 ( Sequential Minimal Optimization, SMO)

SVM有很多实现,但是其中最流行的一种实现是序列最小优化

SVM优缺点
优点:泛化错误率低,计算开销不大,结果易解释。
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。
适用数据类型:数值型和标称型数据

6.1基于最大间隔分隔数据

如果可以画出一条直线将两组数据点分开,这组数据则被称为线性可分数据。将数据集分隔开来的直线称为分隔超平面。
    由于数据点都在二维平面上,所以此时分割超平面就是一条直线。但是,如果所给的数据集时三维的,那么此时用来分隔数据的就是一个平面。更高维的情况以此类推。如果数据集时1024维,那么就需要一个1023维的某某对象来对数据进行分隔。这个1023维的某某对象被称为超平面,也就是分类的决策边界。
    我们希望找到离分隔超平面最近的点,确保它们离分隔面的距离尽可能远。这里点到分隔面的距离被称为间隔。我们希望间隔尽可能地大。支持向量就是离分隔超平面最近的那些点

6.2寻找最大间隔

6.2.1分类器求解的优化问题

输入数据给分类器会输出一个类别标签,这相当于一个类似于Sigmoid的函数在作用。下面将使用类似海维赛德阶跃函数(即单位阶跃函数)的函数对在这里插入图片描述

作用得到在这里插入图片描述
其中当u<o时f(u)输出-1,反之则输出+1。
目前的目标就是找出分类器定义中的w和b。为此,我们必须找到具有最小间隔的数据点,而这些数据点也就是前面提到的支持向量。一旦找到具有最小间隔的数据点,我们就需要对该间隔最大化。这就可以写作:

在这里插入图片描述
直接求解十分困难,因此对问题进行优化,给定一些约束条件然后求其最优值。对于这类问题,可以引用拉格朗日乘子进行求解。通过引入拉格朗日乘子,我们可以基于约束条件来表述原来的问题。由于这里的约束条件都是基于数据点的,因此我们就可以将超平面写成数据点的形式。于是,优化目标函数最后可以写成:
在这里插入图片描述

其约束条件为:
在这里插入图片描述

我们默认了数据必须100%线性可分,而我们知道几乎所有数据都并非如此。这时我们就可以通过引入所谓松弛变量,来允许有些数据点可以处于分割面的错误一侧。这样我们的优化目标就能保持仍然不变,但是此时新的约束条件则变为:
在这里插入图片描述
常数c用于控制“最大化间隔”和“保证大部分点的函数间隔小于1.0”这两个目标的权重。在优化算法的实现代码中,常数c是一个参数,因此我们就可以通过调节该参数得到不同的结果。一旦求出了所有的alpha,那么分隔超平面就可以通过这些alpha来表达。

6.2.2SVM应用的一般框架

SVM的一般流程:
    1、收集数据:可以使用任意方法。
    2、准备数据:需要数值型数据。
    3、分析数据:有助于可视化分隔超平面。
    4、训练算法:SVM的大部分时间都源自训练,该过程主要实现两个参数的调优。
    5、测试算法:十分简单的计算过程就可以实现。
    6、使用算法:几乎所有分类问题都可以使用SVM,值得一提的是,SVM本身是一个二类分类器,对多累问题应用SVM需要对代码做一些修改。

6.3SMO高效优化算法

SMO算法
SMO表示序列最小优化 (Sequential Minimal Optimization )

SMO算法是将大优化问题分解为多个小优化问题来求解的。

SMO算法的目标是求出一系列alpha和b 一旦求出了这些alpha, 就很容易计算出权重向量w并得到分隔超平面。

SMO算法的工作原理是:
每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,那么就增大其中一个同时减小另一个。这里所谓的“合适” 就是指两个alpha必须要符合一定的条件:

条件一就是这两个alpha必须要在间隔边界之外。
条件二是这两个alpha还没有进行过区间化处理或者不在边界上。

6.3.1Platt的SMO算法

SMO表示序列最小优化(Sequential Minimal Optimization),工作原理是:每次循环中选择两个alpha进行优化处理,一旦找到一对合适的alpha,那么就增大其中一个同时减少另一个。这里所谓的“合适”就是指两个alpha必须要符合一定的条件,条件之一就是这两个alpha必须要在间隔边界之外,而其第二个条件则是这两个alpha还没有进行过区间化处理或者不在边界上。

6.3.2应用简化版SMO算法处理小规模数据集

我们将构建一个辅助函数,用于在某个区间范围内随机选择一个整数。同时,我们也需要另一个辅助函数,用于在数值太大时对其进行调整。下面给出了这两个函数的实现,将其添加到svmMLiA.py 文件中。

from numpy import *
def loadDataSet(fileName):
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])
        labelMat.append(float(lineArr[2]))
    return dataMat,labelMat
 
def selectJrand(i,m):
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))#随机生成
    return j
 
def clipAlpha(aj,H,L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

第一个函数就是我们所熟知的 loadDatSet() 函数,该函数打开文件并对其进行逐行解析,从而得到每行的类标签和整个数据矩阵。
下一个函数 selectJrand() 有两个参数值,其中i是第一个alpha的下标,m是所有alpha的数目。只要函数值不等于输入值i,函数就会进行随机选择。
最后一个辅助函数就是 clipAlpha( ),它是用于调整大于H或小于r的alpha值。

下面测试代码输出如下所示

import svmMLiA
dataArr,labelArr = svmMLiA.loadDataSet('testSet.txt')
print(labelArr)

在这里插入图片描述
可以看出,采用的类别标签是-1和1,而不是0和1。
该SMO函数的伪代码大致如下:
    创建一个alpha向量并将其初始化为0向量
    当迭代次数小于最大迭代次数时(外循环)
            对数据集中的每个数据向量(内循环):
                如果改数据向量可以被优化:
                    随机选择另外一个数据向量
                    同时优化这两个向量
                    如果两个向量都不能被优化,退出内循环
        如果所有向量都没被优化,增加迭代数目,继续下次循环
下面的代码是SMO算法的一个有效版本。在Python中,如果某行以\符号结束,那么就意味着该行语句没有结束并会在下一行延续。下面的代码当中有很多很长的语句必须要分成多行来写。因此,下面的程序中使用了多个\符号。打开文件 svmMLiA.py 输入如下。

def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
    b = 0; m,n = shape(dataMatrix)
    alphas = mat(zeros((m,1)))
    iter = 0
    while (iter < maxIter):
        alphaPairsChanged = 0
        for i in range(m):
            fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
            Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
            if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
                j = selectJrand(i,m)
                fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
                Ej = fXj - float(labelMat[j])
                alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
                if (labelMat[i] != labelMat[j]):
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L==H: print("L==H"); continue
                eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T \
                    - dataMatrix[j,:]*dataMatrix[j,:].T
                if eta >= 0: print("eta>=0"); continue
                alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                alphas[j] = clipAlpha(alphas[j],H,L)
                if (abs(alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); continue
                alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
                                                                        #the update is in the oppostie direction
                b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T \
                    - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T \
                    - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                if (0 < alphas[i]) and (C > alphas[i]): b = b1
                elif (0 < alphas[j]) and (C > alphas[j]): b = b2
                else: b = (b1 + b2)/2.0
                alphaPairsChanged += 1
                print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
        if (alphaPairsChanged == 0): iter += 1
        else: iter = 0
        print("iteration number: %d" % iter)
    return b,alphas

然后是测试函数输出结果如下所示

import svmMLiA
dataArr,labelArr = svmMLiA.loadDataSet('testSet.txt')
b,alphas = svmMLiA.smoSimple(dataArr,labelArr,0.6,0.001,40)
print(b)
print(alphas[alphas>0])

在这里插入图片描述
在这里插入图片描述

6.4利用完整Platt SMO算法加速优化

Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替:一种方式是在所有数据集上进行单遍扫描,另一种则是在非边界alpha中实现单遍扫描。而所谓非边界alpha指的就是那些不等于边界0或C的alpha值。对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历。同时,该步骤会跳过那些已知的不会改变的alpha值。
在选择第一个alpha值后,算法会通过一个内循环来确定第二个alpha值。在优化过程中,会通过最大化步长的方式来获得第二个alpha值。在简化版SMO算法中,我们会在选择j之后计算错误率Ej。但在此,我们会建立一个全局的缓存用于保存误差值,并从中选择使得步长或者说Ei-Ej最大的alpha值。
下面的程序包含一个用于清理代码的数据结构和3个用于对E进行缓存的辅助函数。

import matplotlib.pyplot as plt
import numpy as np
import random

class optStruct:
    """
    数据结构,维护所有需要操作的值
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
    """
    def __init__(self, dataMatIn, classLabels, C, toler):
        self.X = dataMatIn                                #数据矩阵
        self.labelMat = classLabels                        #数据标签
        self.C = C                                         #松弛变量
        self.tol = toler                                 #容错率
        self.m = np.shape(dataMatIn)[0]                 #数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m,1)))         #根据矩阵行数初始化alpha参数为0   
        self.b = 0                                         #初始化b参数为0
        self.eCache = np.mat(np.zeros((self.m,2)))         #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。

def loadDataSet(fileName):
    """
    读取数据
    Parameters:
        fileName - 文件名
    Returns:
        dataMat - 数据矩阵
        labelMat - 数据标签
    """
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat

def calcEk(oS, k):
    """
    计算误差
    Parameters:
        oS - 数据结构
        k - 标号为k的数据
    Returns:
        Ek - 标号为k的数据误差
    """
    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T) + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJrand(i, m):
    """
    函数说明:随机选择alpha_j的索引值

    Parameters:
        i - alpha_i的索引值
        m - alpha参数个数
    Returns:
        j - alpha_j的索引值
    """
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

def selectJ(i, oS, Ei):
    """
    内循环启发方式2
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
        Ei - 标号为i的数据误差
    Returns:
        j, maxK - 标号为j或maxK的数据的索引值
        Ej - 标号为j的数据误差
    """
    maxK = -1; maxDeltaE = 0; Ej = 0                         #初始化
    oS.eCache[i] = [1,Ei]                                      #根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]        #返回误差不为0的数据的索引值
    if (len(validEcacheList)) > 1:                            #有不为0的误差
        for k in validEcacheList:                           #遍历,找到最大的Ek
            if k == i: continue                             #不计算i,浪费时间
            Ek = calcEk(oS, k)                                #计算Ek
            deltaE = abs(Ei - Ek)                            #计算|Ei-Ek|
            if (deltaE > maxDeltaE):                        #找到maxDeltaE
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej                                        #返回maxK,Ej
    else:                                                   #没有不为0的误差
        j = selectJrand(i, oS.m)                            #随机选择alpha_j的索引值
        Ej = calcEk(oS, j)                                    #计算Ej
    return j, Ej                                             #j,Ej

def updateEk(oS, k):
    """
    计算Ek,并更新误差缓存
    Parameters:
        oS - 数据结构
        k - 标号为k的数据的索引值
    Returns:
        无
    """
    Ek = calcEk(oS, k)                                        #计算Ek
    oS.eCache[k] = [1,Ek]                                    #更新误差缓存


def clipAlpha(aj,H,L):
    """
    修剪alpha_j
    Parameters:
        aj - alpha_j的值
        H - alpha上限
        L - alpha下限
    Returns:
        aj - 修剪后的alpah_j的值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

def innerL(i, oS):
    """
    优化的SMO算法
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
    Returns:
        1 - 有任意一对alpha值发生变化
        0 - 没有任意一对alpha值发生变化或变化太小
    """
    #步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    #优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        #使用内循环启发方式2选择alpha_j,并计算Ej
        j,Ej = selectJ(i, oS, Ei)
        #保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        #步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        #步骤3:计算eta
        eta = 2.0 * oS.X[i,:] * oS.X[j,:].T - oS.X[i,:] * oS.X[i,:].T - oS.X[j,:] * oS.X[j,:].T
        if eta >= 0:
            print("eta>=0")
            return 0
        #步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
        #步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        #更新Ej至误差缓存
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        #步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        #更新Ei至误差缓存
        updateEk(oS, i)
        #步骤7:更新b_1和b_2
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T
        #步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter):
    """
    完整的线性SMO算法
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        maxIter - 最大迭代次数
    Returns:
        oS.b - SMO算法计算的b
        oS.alphas - SMO算法计算的alphas
    """
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler)                    #初始化数据结构
    iter = 0                                                                                         #初始化当前迭代次数
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):                            #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
        alphaPairsChanged = 0
        if entireSet:                                                                                #遍历整个数据集                           
            for i in range(oS.m):       
                alphaPairsChanged += innerL(i,oS)                                                    #使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:                                                                                         #遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]                        #遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:                                                                                #遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):                                                                #如果alpha没有更新,计算全样本遍历
            entireSet = True 
        print("迭代次数: %d" % iter)
    return oS.b,oS.alphas                                                                             #返回SMO算法计算的b和alphas


def showClassifer(dataMat, classLabels, w, b):
    """
    分类结果可视化
    Parameters:
        dataMat - 数据矩阵
        w - 直线法向量
        b - 直线解决
    Returns:
        无
    """
    #绘制样本点
    data_plus = []                                  #正样本
    data_minus = []                                 #负样本
    for i in range(len(dataMat)):
        if classLabels[i] > 0:
            data_plus.append(dataMat[i])
        else:
            data_minus.append(dataMat[i])
    data_plus_np = np.array(data_plus)              #转换为numpy矩阵
    data_minus_np = np.array(data_minus)            #转换为numpy矩阵
    plt.scatter(np.transpose(data_plus_np)[0], np.transpose(data_plus_np)[1], s=30, alpha=0.7)   #正样本散点图
    plt.scatter(np.transpose(data_minus_np)[0], np.transpose(data_minus_np)[1], s=30, alpha=0.7) #负样本散点图
    #绘制直线
    x1 = max(dataMat)[0]
    x2 = min(dataMat)[0]
    a1, a2 = w
    b = float(b)
    a1 = float(a1[0])
    a2 = float(a2[0])
    y1, y2 = (-b- a1*x1)/a2, (-b - a1*x2)/a2
    plt.plot([x1, x2], [y1, y2])
    #找出支持向量点
    for i, alpha in enumerate(alphas):
        if abs(alpha) > 0:
            x, y = dataMat[i]
            plt.scatter([x], [y], s=150, c='none', alpha=0.7, linewidth=1.5, edgecolor='red')
    plt.show()


def calcWs(alphas,dataArr,classLabels):
    """
    计算w
    Parameters:
        dataArr - 数据矩阵
        classLabels - 数据标签
        alphas - alphas值
    Returns:
        w - 计算得到的w
    """
    X = np.mat(dataArr); labelMat = np.mat(classLabels).transpose()
    m,n = np.shape(X)
    w = np.zeros((n,1))
    for i in range(m):
        w += np.multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w

if __name__ == '__main__':
    dataArr, classLabels = loadDataSet('testSet.txt')
    b, alphas = smoP(dataArr, classLabels, 0.6, 0.001, 40)
    w = calcWs(alphas,dataArr, classLabels)
    showClassifer(dataArr, classLabels, w, b)


输出结果如下所示
在这里插入图片描述
在这里插入图片描述
实验分析:
在这两个版本(简化版和完整版)中,实现alpha 的更改和代数运算的优化环节一模一样。在优化过程中,唯一的不同就是选择alpha 的方式。完整版的Platt SMO算法应用了一些能够提速的启发方法。
    Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替:一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描。而所谓非边界alpha指的就是那些不等于边界0或C的alpha值。对整个数据集的扫描相当容易,而实现非边界alpha值的扫描时,首先需要建立这些alpha值的列表,然后再对这个表进行遍历。同时,该步骤会跳过那些已知的不会改变的alpha值。
    在选择第一个alpha值后,算法会通过一个内循环来选择第二个alpha值。在优化过程中,会通过最大化步长的方式来获得第二个alpha值。在简化版SMO算法中,我们会在选择j 之后计算错误率 Ej。但在这里,我们会建立一个全局的缓存用于保存误差值,并从中选择使得步长或者说 Ei-Ej 最大的alpha 值。
再然后就是感受最深的就是程序运行的速度快了非常多。

6.5在复杂数据上应用核函数

上面我们已经学到了SVM如何处理线性可分的情况,而对于非线性的情况,我们就要使用一种称为核函数的工具将数据转换成易于分类器理解的形式。
在这里插入图片描述

6.5.1利用核函数将数据映射到高维空间

上图数据点处于一个圆中,人类的大脑能够意识到这一点。然而,对于分类器而言,它只能识别分类器的结果是大于0还是小于0。如果只在x和y轴构成的坐标系中插入直线进行分类的话,我们并不会得到理想的结果。我们或许可以对圆中的数据进行某种形式的转换,从而得到某些新的变量来表示数据。在这种表示情况下,我们就更容易得到大于0或者小于0的测试结果。在这个例子中,我们将数据从一个特征空间转换到另一个特征空间。在新空间下,我们可以很容易利用已有的工具对数据进行处理。数学家们喜欢将这个过程称之为从一个特征空间到另一个特征空间的映射。在通常情况下,这种映射会将低维特征空间映射到高维空间。

6.5.2径向基核函数

径向基函数是一个采用向量作为自变量的函数,能够基于向量距离运算输出一个标量。这个距离可以是从<0,0>向量或者其他向量开始计算的距离。接下来将会使用到径向基函数的高斯版本:
k ( x , y ) = exp ⁡ ( − ∥ x − y ∥ 2 2 σ 2 ) k(x, y)=\exp \left(\frac{-\|x-y\|^{2}}{2 \sigma^{2}}\right) k(x,y)=exp(2σ2xy2)
其中,σ \sigmaσ是用户定义的用于确定到达率或者说函数值跌落到0的速度参数。上述高斯核函数将数据从原始空间映射到无穷维空间。

实现代码如下所示

# -*-coding:utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import random

class optStruct:
    """
    数据结构,维护所有需要操作的值
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        kTup - 包含核函数信息的元组,第一个参数存放核函数类别,第二个参数存放必要的核函数需要用到的参数
    """
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):
        self.X = dataMatIn                                #数据矩阵
        self.labelMat = classLabels                        #数据标签
        self.C = C                                         #松弛变量
        self.tol = toler                                 #容错率
        self.m = np.shape(dataMatIn)[0]                 #数据矩阵行数
        self.alphas = np.mat(np.zeros((self.m,1)))         #根据矩阵行数初始化alpha参数为0
        self.b = 0                                         #初始化b参数为0
        self.eCache = np.mat(np.zeros((self.m,2)))         #根据矩阵行数初始化虎误差缓存,第一列为是否有效的标志位,第二列为实际的误差E的值。
        self.K = np.mat(np.zeros((self.m,self.m)))        #初始化核K
        for i in range(self.m):                            #计算所有数据的核K
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def kernelTrans(X, A, kTup):
    """
    通过核函数将数据转换更高维的空间
    Parameters:
        X - 数据矩阵
        A - 单个数据的向量
        kTup - 包含核函数信息的元组
    Returns:
        K - 计算的核K
    """
    m,n = np.shape(X)
    K = np.mat(np.zeros((m,1)))
    if kTup[0] == 'lin': K = X * A.T                       #线性核函数,只进行内积。
    elif kTup[0] == 'rbf':                                 #高斯核函数,根据高斯核函数公式进行计算
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T
        K = np.exp(K/(-1*kTup[1]**2))                     #计算高斯核K
    else: raise NameError('核函数无法识别')
    return K                                             #返回计算的核K

def loadDataSet(fileName):
    """
    读取数据
    Parameters:
        fileName - 文件名
    Returns:
        dataMat - 数据矩阵
        labelMat - 数据标签
    """
    dataMat = []; labelMat = []
    fr = open(fileName)
    for line in fr.readlines():                                     #逐行读取,滤除空格等
        lineArr = line.strip().split('\t')
        dataMat.append([float(lineArr[0]), float(lineArr[1])])      #添加数据
        labelMat.append(float(lineArr[2]))                          #添加标签
    return dataMat,labelMat

def calcEk(oS, k):
    """
    计算误差
    Parameters:
        oS - 数据结构
        k - 标号为k的数据
    Returns:
        Ek - 标号为k的数据误差
    """
    fXk = float(np.multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJrand(i, m):
    """
    函数说明:随机选择alpha_j的索引值

    Parameters:
        i - alpha_i的索引值
        m - alpha参数个数
    Returns:
        j - alpha_j的索引值
    """
    j = i                                 #选择一个不等于i的j
    while (j == i):
        j = int(random.uniform(0, m))
    return j

def selectJ(i, oS, Ei):
    """
    内循环启发方式2
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
        Ei - 标号为i的数据误差
    Returns:
        j, maxK - 标号为j或maxK的数据的索引值
        Ej - 标号为j的数据误差
    """
    maxK = -1; maxDeltaE = 0; Ej = 0                         #初始化
    oS.eCache[i] = [1,Ei]                                      #根据Ei更新误差缓存
    validEcacheList = np.nonzero(oS.eCache[:,0].A)[0]        #返回误差不为0的数据的索引值
    if (len(validEcacheList)) > 1:                            #有不为0的误差
        for k in validEcacheList:                           #遍历,找到最大的Ek
            if k == i: continue                             #不计算i,浪费时间
            Ek = calcEk(oS, k)                                #计算Ek
            deltaE = abs(Ei - Ek)                            #计算|Ei-Ek|
            if (deltaE > maxDeltaE):                        #找到maxDeltaE
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej                                        #返回maxK,Ej
    else:                                                   #没有不为0的误差
        j = selectJrand(i, oS.m)                            #随机选择alpha_j的索引值
        Ej = calcEk(oS, j)                                    #计算Ej
    return j, Ej                                             #j,Ej

def updateEk(oS, k):
    """
    计算Ek,并更新误差缓存
    Parameters:
        oS - 数据结构
        k - 标号为k的数据的索引值
    Returns:
        无
    """
    Ek = calcEk(oS, k)                                        #计算Ek
    oS.eCache[k] = [1,Ek]                                    #更新误差缓存


def clipAlpha(aj,H,L):
    """
    修剪alpha_j
    Parameters:
        aj - alpha_j的值
        H - alpha上限
        L - alpha下限
    Returns:
        aj - 修剪后的alpah_j的值
    """
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj

def innerL(i, oS):
    """
    优化的SMO算法
    Parameters:
        i - 标号为i的数据的索引值
        oS - 数据结构
    Returns:
        1 - 有任意一对alpha值发生变化
        0 - 没有任意一对alpha值发生变化或变化太小
    """
    #步骤1:计算误差Ei
    Ei = calcEk(oS, i)
    #优化alpha,设定一定的容错率。
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        #使用内循环启发方式2选择alpha_j,并计算Ej
        j,Ej = selectJ(i, oS, Ei)
        #保存更新前的aplpha值,使用深拷贝
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        #步骤2:计算上下界L和H
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            print("L==H")
            return 0
        #步骤3:计算eta
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j]
        if eta >= 0:
            print("eta>=0")
            return 0
        #步骤4:更新alpha_j
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej)/eta
        #步骤5:修剪alpha_j
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        #更新Ej至误差缓存
        updateEk(oS, j)
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            print("alpha_j变化太小")
            return 0
        #步骤6:更新alpha_i
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])
        #更新Ei至误差缓存
        updateEk(oS, i)
        #步骤7:更新b_1和b_2
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        #步骤8:根据b_1和b_2更新b
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else:
        return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup = ('lin',0)):
    """
    完整的线性SMO算法
    Parameters:
        dataMatIn - 数据矩阵
        classLabels - 数据标签
        C - 松弛变量
        toler - 容错率
        maxIter - 最大迭代次数
        kTup - 包含核函数信息的元组
    Returns:
        oS.b - SMO算法计算的b
        oS.alphas - SMO算法计算的alphas
    """
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)                #初始化数据结构
    iter = 0                                                                                         #初始化当前迭代次数
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):                            #遍历整个数据集都alpha也没有更新或者超过最大迭代次数,则退出循环
        alphaPairsChanged = 0
        if entireSet:                                                                                #遍历整个数据集
            for i in range(oS.m):
                alphaPairsChanged += innerL(i,oS)                                                    #使用优化的SMO算法
                print("全样本遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:                                                                                         #遍历非边界值
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]                        #遍历不在边界0和C的alpha
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print("非边界遍历:第%d次迭代 样本:%d, alpha优化次数:%d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:                                                                                #遍历一次后改为非边界遍历
            entireSet = False
        elif (alphaPairsChanged == 0):                                                                #如果alpha没有更新,计算全样本遍历
            entireSet = True
        print("迭代次数: %d" % iter)
    return oS.b,oS.alphas                                                                             #返回SMO算法计算的b和alphas


def img2vector(filename):
    """
    将32x32的二进制图像转换为1x1024向量。
    Parameters:
        filename - 文件名
    Returns:
        returnVect - 返回的二进制图像的1x1024向量
    """
    returnVect = np.zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def loadImages(dirName):
    """
    加载图片
    Parameters:
        dirName - 文件夹的名字
    Returns:
        trainingMat - 数据矩阵
        hwLabels - 数据标签
    """
    from os import listdir
    hwLabels = []
    trainingFileList = listdir(dirName)
    m = len(trainingFileList)
    trainingMat = np.zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels

def testDigits(kTup=('rbf', 10)):
    """
    测试函数
    Parameters:
        kTup - 包含核函数信息的元组
    Returns:
        无
    """
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10, kTup)
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    svInd = np.nonzero(alphas.A>0)[0]
    sVs=datMat[svInd]
    labelSV = labelMat[svInd];
    print("支持向量个数:%d" % np.shape(sVs)[0])
    m,n = np.shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("训练集错误率: %.2f%%" % (float(errorCount)/m))
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat = np.mat(dataArr); labelMat = np.mat(labelArr).transpose()
    m,n = np.shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * np.multiply(labelSV,alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArr[i]): errorCount += 1
    print("测试集错误率: %.2f%%" % (float(errorCount)/m))

if __name__ == '__main__':
    testDigits()


实验结果如下所示
在这里插入图片描述

6.6小结

本章学习了新的分类器支持向量机,先是介绍了一个简化版本所实现的SMO优化过程,接着给出了完整的Platt SMO算法。

后面介绍了核函数,核技巧会将数据(有时是非线性数据)从一个低维空间映射到一个高维空间,可以将一个在低维空间中的非线性问题转换成高维空间下的线性问题来求解。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值