李宏毅机器学习(6)

Why Deep

评比

长什么样的神经网络更好?
为了评判公平,model的参数要一样多。
Fat+Short vs. Thin+Tall
在这里插入图片描述
结果:Thin+Tall更好
在这里插入图片描述
在这里插入图片描述
The modularization is automatically learned from data
在这里插入图片描述

Modularization 在NPL很有用,例如:
>What do you think
The first stage of speech recognition

  • Classification:
    • input → \rightarrow acoustic feature
    • 每隔一段时间取一段语音。用classifier判断每个acoustic feature属于哪个state
    • output → \rightarrow state

回到Universality Theorem,尽管理论上只用一层就够了,但使用深度学习结构可以更加有效率。
正如逻辑电路一样,一层是可以做到,但使用多层结构只要更少的参数、数据,效率更高。
在这里插入图片描述

End-to-end Learning:只给input和output,让机器自己学每个function干什么。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值