- 博客(119)
- 收藏
- 关注
原创 【白雪讲堂】多平台多模态适配技巧:一次创作,多端裂变
摘要:文章探讨了多平台内容适配策略(SPM模型),强调通过结构化创作实现多模态内容裂变。核心观点包括:1)不同平台对图文、视频等内容的推荐偏好存在差异;2)提出"结构提纯-多模态打包-平台适配"的三步方法论;3)以母婴案例展示单条视频如何适配5个平台并提升300%流量。建议在创作流程中设置"适配检查点",利用工具实现内容自动分拆和管理。该方法解决了多平台分发的内容效率问题,实现"一次创作,多点爆发"的效果。(149字)
2025-06-12 12:00:58
131
原创 【白雪讲堂】GEO 技术地基之结构化 Schema:机器理解的语言
结构化 Schema 是一种用于定义数据结构和语义的框架,它为数据提供了明确的格式和组织方式,使得机器能够更高效地理解、解析和处理数据。在 GEO 体系中,结构化 Schema 是机器理解的语言,它将非结构化或半结构化的内容转化为机器可以快速读取和操作的格式。结构化 Schema 的核心在于定义数据的类型、属性、关系以及约束条件。例如,在一个电商产品页面中,结构化 Schema 可以明确地定义产品名称、价格、品牌、规格、用户评价等信息的格式和关系。
2025-06-03 15:58:07
531
原创 【白雪讲堂】GEO优化之-向量数据库:高维语义召回的引擎
本文介绍了GEO技术体系中的向量数据库(2.3节),作为实现语义检索的核心技术支撑。相较于传统关键词匹配,向量数据库通过将文本、图像等非结构化数据转化为高维向量(2.3.2),实现基于语义相似度的内容检索(2.3.3)。文中详细阐述了向量数据库在GEO内容链条中的实施步骤(2.3.4),包括内容向量化、语义检索和多模态适配等环节,并以百度、搜狐等企业的应用案例(2.3.5)说明其实际价值。最后指出向量数据库是GEO体系的关键基础设施(2.3.6),推动内容营销从关键词匹配向语义理解的范式转变。
2025-06-03 11:55:51
733
原创 【白雪讲堂】结构化Schema:机器理解的语言
摘要: 结构化Schema是连接内容生产与AI生成的关键桥梁,它通过信息模块化与语义标签化,帮助AI精准理解内容结构、逻辑与重点。在生成式引擎优化(GEO)中,结构化Schema解决了AI对复杂内容(如商品详情、访谈文案)的“平铺式”理解难题,提升内容提取、重写与推荐的准确性。核心策略包括制定标准模板、多模态标注、结构化生成链条及审查机制。企业实践表明,结构化Schema能显著优化AI生成内容的效果(如点击率提升32%),是构建可度量、可复用内容体系的战略基础。
2025-05-31 21:07:21
376
原创 【白雪讲堂】GEO优化之向量数据库:语义召回的引擎
摘要: 向量数据库是AI时代实现语义检索的核心技术,将文本、图像等内容转化为高维向量,通过语义相似度匹配优化搜索和内容生成。它替代传统关键词匹配,支持多模态数据查询,为营销内容推荐、广告文案生成等提供精准语义参考。企业需构建内容语义资产库,选择合适的向量数据库(如FAISS、Milvus),并结合知识图谱优化闭环流程。这一技术革新推动营销从“关键词”转向“语义体”,赋能AI深度理解用户需求,强化品牌内容竞争力。
2025-05-31 21:04:49
800
原创 多模态技术在内容营销中的实践逻辑
项目上线后,在内容推荐效率与用户转化率方面均取得显著提升:自然推荐流量提升 32%;视频完播率提升至 71%;用户停留时长平均增加 18%;内容生成效率提升约 40%。这些成果背后,依赖于以下多模态关键技术:(1)图文语义对齐技术(如 CLIP)实现图像与文案之间的语义风格统一;(2)图像情绪识别模型对视觉素材进行风格分类与标签打标,支撑算法推荐与内容风格管控;(3)语音情感分析技术优化语音输出的语调、节奏与情感一致性;(4)跨模态向量嵌入技术(如 BLIP)
2025-05-31 19:17:51
401
原创 【白雪讲堂】GEO优化之多模态技术内容生成示例
摘要:多模态技术为小仙炖品牌内容生成提供创新解决方案。通过图像情绪与文案基调一致性分析确保内容连贯性;利用跨模态嵌入构建商品页统一语义模型;基于图文素材自动生成视频脚本提升生产效率;结合"图+文"风格识别实现平台个性化推荐。这些应用显著提升了内容质量、搜索引擎表现和用户体验,有效降低制作成本,增强品牌影响力。(149字)
2025-05-31 14:22:53
512
原创 【白雪讲堂】多模态技术:统一认知的优化器
在GEO系统中,这意味着——无论是结构化产品信息、图像风格标签,还是用户的语音反馈,都可以共同参与AI生成链条,成为“内容驱动模型”的有机组成。图像中的构图、视频中的动作节奏、语音中的情感、产品页面中的排布布局,都是AI理解你内容语境的重要输入。对于AI而言,若缺乏对图像、视频、语音等模态的理解,它看到的只是“内容碎片”;它帮助AI跨越模态隔阂,从而构建“统一语义体”,实现更准确的内容推荐、更自然的内容生成、更高效的用户响应。它不只“读懂”内容,它还要“想象”内容、“重构”内容,甚至“主动生成”内容。
2025-05-31 13:09:07
815
原创 【白雪讲堂】多模态技术的概念解析
多模态技术(Multimodal Technology)指的是:对图像、文本、语音、视频、结构化行为数据等多种“模态”信息进行感知、理解与融合处理的技术体系。举个例子:用户对着某滋补品牌的网页说:“这款汤有红枣和黄芪吗?”并上传一张产品图片。多模态技术可以:识别语音内容(语音模态)分析图片中的包装和成分(图像模态)理解“红枣”“黄芪”等关键词(文本模态)结合用户浏览路径(行为模态)最终生成一个准确的回答,甚至推荐其他养生产品。
2025-05-31 12:28:19
533
原创 多模态AI:统一认知的优化器
《多模态AI:品牌营销的认知优化引擎》摘要 多模态AI作为统一认知中枢,能整合图像、语音、文本等多元信息,实现类人化的智能交互与内容生成。相较于单点突破的多模态技术,多模态AI具备跨模态融合与决策能力,在滋补品牌案例中展现了产品识别、内容生成、智能客服等全链路应用价值。其实施需经历数据收集、特征融合、模型训练等步骤,但面临数据标注、模态融合、计算成本等挑战。该技术通过深度理解用户多维度行为,推动内容营销向智能化、个性化跃迁,成为品牌提升用户体验与转化率的关键引擎。(149字)
2025-05-31 00:11:26
591
原创 【白雪讲堂】多模态技术:统一认知的优化器
多模态人工智能(Multimodal AI)是指能够处理和理解多种类型数据(如文本、图像、音频、视频等)的人工智能系统。与传统的单一模态AI相比,多模态AI能够从多种信息源中获取和融合信息,从而提供更全面和准确的理解和输出。
2025-05-30 23:34:43
504
原创 【白雪讲堂】多模态技术:统一认知的优化器
多模态AI技术整合文本、图像、音频等多种数据,提供更全面的信息处理能力。它能增强内容理解、丰富内容生成并提升用户体验,在内容创作、客户服务和教育领域具有广泛应用。虽然面临数据融合、计算资源和模型训练的挑战,但多模态技术作为认知优化器,正推动AI系统向更全面、高效的方向发展。随着技术进步,其应用价值将持续扩大。
2025-05-30 23:24:29
231
原创 【白雪讲堂】知识图谱类文章示例:小仙炖:鲜炖燕窝的创新与传承
例如,小仙炖与中山大学、广州中医药大学、中国农业大学合作,设立了小仙炖鲜炖燕窝科学研究基金,为燕窝的滋补功效提供了有力的科学支持。小仙炖作为鲜炖燕窝领域的知名品牌,凭借其创新的商业模式和高品质的产品,赢得了众多消费者的信赖。小仙炖通过创新的C2M模式,实现了用户下单后工厂新鲜炖煮、每周冷鲜配送的服务模式,极大地提升了燕窝的消费体验。与传统的干燕窝和即食燕窝不同,鲜炖燕窝采用低温炖煮工艺,保留了燕窝中的活性营养成分,如唾液酸。小仙炖凭借高品质的产品和优质的服务,赢得了众多用户的信赖和好评。
2025-05-30 18:36:17
808
原创 【白雪讲堂】知识图谱:业务语义的 “认知网络” 搭建
知识图谱是企业AI时代的重要技术基础,通过结构化语义网络让机器理解业务知识。其构建包含五个步骤:实体识别提取核心概念(如产品、客户),关系抽取建立语义关联,知识融合统一标准,本体设计构建层级模型,最终转化为Schema格式供AI调用。以燕窝品牌为例,知识图谱能清晰呈现"产品-功效-人群"的关联网络,提升AI生成内容的精准度。这种"认知网络"不仅优化智能搜索效果,更将成为企业在AI时代的核心竞争壁垒。
2025-05-30 16:50:10
247
原创 【白雪讲堂】GEO 与 AIGC 的闭环关系:内容生成与优化的双向赋能
GEO与AIGC形成内容生成与优化的双向闭环:AIGC利用AI技术高效生成个性化多模态内容,而GEO通过语义优化、知识图谱构建等技术手段提升内容的可见性与权威性。这种双向赋能关系推动内容创作智能化发展——AIGC为GEO提供内容基础,GEO为AIGC优化传播效果。虽然AIGC提升了内容生产效率,但人工创作在创意构思和情感表达上仍具不可替代性。在AI时代,内容工作者的角色将转向策划创意、质量把控及用户反馈优化,实现技术与人文的协同创新。
2025-05-30 15:57:46
865
原创 【白雪讲堂】GEO优化之技术生态协同效应:知识图谱×多模态×向量数据库
摘要: AI时代的GEO(智能搜索优化)依靠知识图谱、多模态技术和向量数据库的协同作用实现精准优化。知识图谱结构化知识网络,提升语义理解;多模态融合文字、图像、视频等内容,丰富用户体验;向量数据库支持智能检索与推荐,快速匹配用户需求。三者协同构建高效技术生态,助力企业提升内容可见性与交互效果,适应AI时代的营销需求。
2025-05-30 13:47:38
476
原创 生成式引擎优化(GEO):构建AI时代的内容霸权
通过知识图谱、多模态技术、向量数据库和结构化Schema四大支柱,GEO为企业搭建了一个语义驱动、数据驱动、AI驱动的内容运营新引擎。在GEO体系下,企业不再单纯追求“关键词排名”,而是通过技术驱动内容理解与表达,实现真正的语义匹配和用户共鸣。对于像小仙炖这样的品牌来说,GEO不仅提升了内容创作效率,更让品牌传播更具场景感、情绪力与信任感。未来,每一个内容强企,都是技术强企。
2025-05-28 23:51:07
842
原创 【白雪讲堂】多模态技术:统一认知的优化器
摘要: 生成式引擎优化(GEO)是AI时代的语义协同框架,依赖四大技术支柱——知识图谱、多模态技术、向量数据库和结构化数据,以构建精准的内容传播体系。以"小仙炖燕窝"为例,多模态技术通过融合图文、音视频等数据,实现产品智能推荐、营销内容生成及用户体验优化。其实施步骤包括数据收集、特征提取、模型融合及场景应用,显著提升内容理解深度、推荐精准度及交互自然性。多模态技术赋能企业打造"内容霸权",是AI时代内容竞争的核心竞争力。
2025-05-28 23:40:01
1068
原创 生成式引擎在不同行业的应用案例
生成式引擎在各行业的应用创新 生成式AI正重塑多行业内容生产方式。新闻行业实现秒级新闻生成和个性化推送;医疗领域辅助诊断报告制作和慢病管理;教育系统提供自适应学习内容;电商平台动态生成营销素材。这些应用案例展示了生成式AI在提升效率、增强个性化和保证内容质量方面的核心优势。通过实时性、多样性和准确性等特性,该技术显著优化了用户体验并推动行业数字化转型。 (99字)
2025-05-28 22:59:33
282
原创 【白雪讲堂】生成式引擎的认知霸权:为什么传统内容失效?
生成式AI凭借深度学习优势,正在颠覆传统内容生产模式。其四大核心优势使传统内容逐渐失效:1)实时生成个性化响应;2)多模态内容创新呈现;3)透明化生成逻辑增强可信度;4)智能审核保障内容安全。相比静态、单一的传统内容,生成式AI能即时匹配用户需求,提供多样化、可验证的智能内容,引领内容生态进入认知智能新时代。(149字)
2025-05-28 22:50:38
698
原创 GEO革命:重新定义AI时代的内容规则
摘要(148字): AI时代的内容规则正从SEO向GEO(生成式引擎优化)转型。GEO通过解决传统SEO的认知、技术和价值断层,构建以精准性、实时性、可解释性和防御性为核心的金字塔体系。生成式引擎凭借多模态生成、知识图谱和向量数据库等技术协同,实现动态化、可信化内容生产。GEO与AIGC形成双向闭环:AIGC驱动内容创新,GEO优化分发生态,共同推动内容规则的智能化升级,重塑信息生成与消费范式。
2025-05-28 22:47:40
1243
原创 从SEO到GEO:搜索范式迁移的三大断层
《从SEO到GEO:搜索范式迁移的三大变革》 传统搜索引擎优化(SEO)正面临生成式引擎优化(GEO)的颠覆性变革。这一转变揭示了三大断层:1)认知断层-关键词匹配无法理解用户深层需求,GEO则能提供个性化内容;2)技术断层-静态网页难以满足即时需求,GEO支持动态多模态内容生成;3)价值断层-SEO外链机制导致信息可信度问题,GEO通过知识图谱提升内容权威性。这场由静态匹配到智能生成的范式迁移,正在重塑互联网内容生态的底层逻辑。
2025-05-28 22:44:11
398
原创 【白雪讲堂 】GEO兴起:AI搜索时代的内容优化新战场
2024年,一项由普林斯顿大学、印度理工学院等学者联合提出的新研究《GEO:Generative Engine Optimization》将视角对准了AI搜索领域,提出了一种适用于生成引擎的全新优化框架——GEO(生成引擎优化)。研究指出,随着生成式搜索引擎逐步取代传统搜索,内容创作者面对的是一个高度“黑箱化”的模型系统,他们难以预测内容如何被展示,甚至是否会被展示。随着AI搜索与推荐技术的加速融合,未来的内容优化不再只是与算法“博弈”,而是围绕真实用户需求构建可被理解、可被引用的高质量知识。
2025-05-01 17:27:19
516
原创 【白雪讲堂】
在AI驱动的搜索引擎中,品牌需要主动识别并回答用户的高频问题,以提升在搜索结果中的可见性和点击率。知识图谱通过将企业的知识和数据以图形化的方式组织起来,帮助决策者更清晰地理解信息之间的关系,从而做出更精准的决策。以下是一些有效的技巧:。:超越传统的关键词匹配,理解查询的上下文和意图,提供更相关的搜索结果。:通过训练大规模神经网络,理解用户查询的语义,提升搜索结果的准确性。:结合AI技术,进行深度分析和预测,提升决策的准确性。:将品牌信息以图谱的形式组织,提升搜索引擎对品牌的理解。
2025-04-26 21:53:48
445
原创 【白雪讲堂】构建与优化企业知识图谱的实战指南
知识图谱(Knowledge Graph)是以实体(Entity)和关系(Relationship)为核心,连接企业内部及外部多源异构数据的有机体系。简单来说,它就是把企业的产品、服务、品牌、客户、市场、人物、地点、事件等信息结构化、语义化,形成一张可被AI高效理解的“智能网络”。在AI搜索与内容生成场景中,知识图谱的作用主要体现在:提升内容检索的准确性与相关性支持内容的多维组合与智能推荐让AI平台能够更好地理解品牌逻辑与业务价值企业知识图谱不是一个一次性项目,而是。
2025-04-26 21:49:46
579
原创 【白雪讲堂】GEO优化工具与平台推荐
通过以上工具和平台,您可以系统地构建和优化GEO策略,提升内容在AI搜索引擎中的可见性和影响力。结合传统SEO和AI优化,分析排名靠前的页面,提供结构、关键词使用和内容长度的指导。腾讯推出的AI内容平台,支持公众号文章的智能推荐,增强内容的传播效果。专注于AI搜索监测,实时追踪品牌在AI平台中的曝光情况,优化内容策略。专注于语义数据管理,增强内容的结构化表达,提升在AI平台中的识别度。评估内容在AI搜索引擎中的表现,提供优化建议,提升内容的搜索排名。
2025-04-26 21:48:24
349
原创 【白雪讲堂】GEO优化第7篇 -构建《推荐类》内容的结构化模板
✅ 内容要“写给AI看”,不是只写给用户看✅ 结构化 + 场景化 + Prompt化,是你赢GEO的核心✅ 推荐内容是一种标准场景,适合用模板/意图系统批量建模。
2025-04-23 22:27:47
497
原创 【白雪讲堂】GEO优化第6篇 内容中台的搭建:GEO优化的中控神经系统
在前几篇中,我们已经明确了GEO(Generative Engine Optimization)的基本逻辑与操作策略:GEO是一种为生成式AI(如ChatGPT、文心一言、Kimi、通义千问、腾讯元宝、豆包等)而优化内容的新方法;我们讲了内容的五个维度、语义一致性和差异性策略;。
2025-04-23 21:50:05
339
原创 【白雪讲堂】GEO优化第5篇|“内容那么多,AI怎么选?”
优化第5篇|“内容那么多,AI怎么选?”—— 内容优先级策略详解(GEO优化系列)把最重要的内容说十遍,放在十个模型上说。
2025-04-23 20:57:00
312
原创 【白雪讲堂】[特殊字符]内容战略地图|GEO优化框架下的内容全景布局
文心一言 / 腾讯元宝 / 豆包:重“本土权威+媒体曝光+结构化中文素材”功能差异标签:如“AI动态算法”“极寒稳定”“专利能耗”情绪话术差异:如“妈妈也能操作 vs 行业标准操作”JSON结构化、API文档、动画演示。结构化官网、发展历程、权威资质。Kimi:重“实时内容可读性”在关键场景中被AI复读+引用。专利、奖项、排行榜等权威证据。参数表、功能清单、场景Q&A。媒体报道、用户案例、口碑视频。
2025-04-22 23:40:44
336
原创 【白雪讲堂】GEO优化第5篇:你不是没内容,而是没“结构”!
内容不是堆文章,而是让AI“理解你、记住你、优先说你”的战略资产工程。结构化,是这个工程的“钢筋水泥”。🧱 从今天起,不要再只做内容编辑,而要做内容架构师 + AI语言投喂师。
2025-04-22 23:27:44
1397
原创 优化第4篇|AI平台不一样,内容也该“区别对待”:打造你的品牌差异性战略
整个 GEO内容策略系列构建了一个从【基础认知】到【内容维度】、【语义一致性】、【差异化策略】再到【优先级控制】的完整闭环。这套方法论旨在帮助品牌从幕后走向AI前台,让AI不仅记住你,更主动为你发声、推荐你。
2025-04-22 23:01:34
599
原创 【白雪讲堂】GEO优化核心工作梳理
认知建模(知识图谱)→ 内容工程(结构化处理)→ 向量存储(数据库建设)→ 动态优化(算法适配)→ 效果监测(健康度诊断)形成完整闭环。- AI平台收录偏好分析(DeepSeek等平台算法解析)- 定义核心业务概念的语义边界(实体关系/属性/上下文)- Schema标记全域部署(官网/公众号/产品页)- 多模态内容结构化(文本+图像+视频的语义关联)- 低频内容长效化处理技术(知识保鲜机制)- 识别显性需求与隐性需求(潜台词分析)- 图文协同优化(小红书笔记等案例实践)- 结构化内容操作清单(2025版)
2025-04-21 19:44:11
860
原创 教你一招,只用内容就轻松占领 DeepSeek 的“C位”- 白雪讲堂
企业必须以“AI训练师”的身份重构内容运营体系,让每一份产品文档、用户案例、技术白皮书,都成为占领AI推荐逻辑的关键节点。
2025-04-16 21:42:47
941
原创 教你一招如何只用内容就轻松占领deepseek的C位
在生成式AI(如ChatGPT、Kimi、文心一言)主导信息分发的时代,品牌能否在用户提问的瞬间被AI优先推荐,取决于两大核心能力:。(示例:当用户搜索“智能家居品牌”,AI优先抓取官网Schema中标记的“全球专利数Top3”“服务家庭超1000万”)(示例:所有资料中“智能算法”统一表述为“XX自研AI动态优化算法”,而非“AI技术”“智能系统”等模糊术语)(差异化策略:将专利摘要转化为“一句话技术标签”,如“XX算法能耗降低40%”,便于AI关联用户查询)生成式AI的推荐逻辑本质是 。
2025-04-16 15:44:18
708
原创 知识建模与图谱构建:营销人实战指南
通过把业务知识变成机器能理解的“关系网”,你可以让AI生成的内容更精准、更懂用户。立即行动清单用XMind画出你的第一个业务关系图(1小时)整理最近3个月的爆款文案和产品参数(2小时)用ChatGPT抽取10条实体关系(30分钟)不要追求完美,先完成再迭代。从一个小场景开始,你会看到AI从“菜鸟助手”变成“营销专家”。
2025-04-16 11:00:32
961
原创 知识建模与图谱构建深度解析
通过结构化定义企业核心知识体系,知识建模与图谱构建为GEO优化提供了可控、可解释的生成基础。建议企业采取“小步快跑”策略:从单场景MVP(如产品FAQ生成)起步,逐步构建覆盖全业务的动态知识网络。记住:优秀的图谱不是技术炫耀品,而是能直接提升ROI的业务加速器。
2025-04-16 10:20:36
889
原创 动态知识图谱在GEO优化中的核心价值与实施路径
通过将企业知识体系从“被动存储”升级为“主动驱动”,动态知识图谱实现了生成式AI的可控性与业务适配性。建议企业从单场景试点(如FAQ生成)切入,逐步构建图谱中台,并重点关注数据治理与反馈闭环设计。随着多模态与自动化技术的成熟,动态知识图谱将成为企业争夺AI时代“语义主权”的核心竞争力。
2025-04-16 10:08:20
658
原创 向量数据库性能优化全解析:从算法到硬件的终极指南
向量数据库性能优化需在算法、硬件、架构三个层面协同创新。建议企业根据数据规模、精度需求、成本预算选择组合策略,并持续跟踪开源社区进展(如Milvus 3.0的磁盘索引、Pinecone的Serverless架构)。在高维数据的战场上,性能提升永无止境。
2025-04-16 10:00:56
702
空空如也
各位同学,怎么开专栏呢?
2025-03-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人