离散化的思想和它的两种代码与区别

离散化是什么:一些数,他们的范围很大(0-1e9),但是个数不算多(1-1e5),并且这些数本身的数大小不重要,重要的是这些数之间的相对大小(比如说某个数是这些数中的第几小,而与这个数本身大小没有关系,要的是相对大小)(6 8 9 4 离散化后即为 2 3 4 1)(要理解相对大小的意思)(6在这4个数中排第二小,那么就把6离散化成2,与数6本身没有关系, 8,9,4亦是如此)(2018.3.26 对这篇博客进行补充修改,被一道题的离散化卡到了,花了一晚上时间,才找到BUG(需离散化的数有无相同的数),黑体为今晚对此篇博客进行了补充完善与区别)

离散化思想:因为数字太大,导致没有办法开那么大的数组,又因为数字个数并不多,这时候就可以对它们进行离散化,离散化是改变了数字的相对大小,例如,有500000个数字,他们的范围是0-1e9的,这样就满足离散化的条件。

就比如说,你可以开一个5e5的数组,但是你不能开一个1e9的数组。只改变这些数字的相对大小

 

第一种离散化。(包含重复元素,推荐使用)
离散化以前一直搞不懂是怎么实现的,看了一个代码才明白。

lower_bound用法

unique用法

const int maxn=1e5+10;

int a[maxn], t[maxn];

int n;

scanf("%d",&n);

for(int i=1; i<=n; i++)

    scanf("%d",a[i]),t[i]=a[i];

sort(t+1,t+n+1);

m=unique(t+1,t+1+n)-t-1;//m为不重复的元素的个数

for(int i=1; i<=n; i++)

    a[i]=lower_bound(t+1,t+1+m,a[i])-t;

原来的a[i]离散化后成了后来的a[i];

离散化后的a[i]范围是(1-m);
举个栗子:
原序列:6 9 4 6 4
排序后:4 4 6 6 9
unique(元素去掉重复的)后:4 6 9 6 9  (前m位数字无重复,其他数字跟排序后的序列想比不改变)
unique有一个返回值,例如有十个有序的数列3 3 5 5 6 6 6 7 7 8,不重复的数字有五个,使用unique去重之后数列变成了3 5 6 7 8 6 6 7 7 8,它只改变了前五个数字后边的不变,返回值是 最后一个改变的数字的地址。so:m=unique(t+1,t+1+n)-t-1;一般要减去首地址(t+1),m为不重复的数字的个数

 

  第二种离散化(复杂度低,但是数据必须是无重复的才能使用)

struct A

{

int x, idx;

bool operator < (const A &rhs) const

{

return x < rhs.x;

}//也可以写个cmp函数排序

};

A a[MAXN];

int rank[MAXN];

int n;

scanf("%d",&n);

for(int i = 1; i <= n; ++i)

{

scanf("%d", &a[i].x);

a[i].idx = i;

}

//for(int i=1; i<=n; i++)

// printf("%d %d\n",a[i].idx,a[i].x);

//printf("\n");

sort(a + 1, a + n + 1);

//for(int i=1; i<=n; i++)

// printf("%d %d\n",a[i].idx,a[i].x);

//printf("\n");

for(int i = 1; i <= n; ++i)

{

rank[a[i].idx] = i;

// printf("rank[%d] = %d\n",a[i].idx,i);

}

给你们个例子:
i      1 2 3 4
x     6 8 9 4
idx  1 2 3 4
排序后:

i      1 2 3 4  //离散化后的数
x     4 6 8 9 
idx  4 1 2 3  //数原来的所在的位置编号
将上面两行黑体数字对应起来 即是:rank[4]=1,rank[1]=2,rank[2]=3,rank[3]=4;  //rank[i]=j表示将原来在第i个位置上的数字离散化成j
so:
rank[1]=2;
rank[2]=3;
rank[3]=4;
rank[4]=1;
so:   6 8 9 4

就离散化为2,3,4,1
如果你想用原来的数字,就用排过序的结构体a[2]=6,a[3]=8,a[4]=9,a[1]=4; //a[i]=j表示排过序后现在的a数组里第i个数字的是j。j也就是第i小。
a[i]是原来的数字;
rank是离散化后的数字;

转自:https://blog.csdn.net/xiangaccepted/article/details/73276826

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值