数论
Baiyi_destroyer
萌新求关注^_^
展开
-
中国剩余定理算法
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3 余2),五五数之剩三(除以5 余3),七七数之剩二(除以7 余2),问物几何?” 这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步: 找出三个数:从3 和5 的公倍数中找出被7 除余1 的最小数15,从3 和7 的公倍数中找出被 5 除余1 的最小数21,最后从5 和7 的公倍数中找出除...转载 2018-07-20 11:37:11 · 1470 阅读 · 0 评论 -
中国剩余定理 (51nod 1079)
一个正整数K,给出K Mod 一些质数的结果,求符合条件的最小的K。例如,K % 2 = 1, K % 3 = 2, K % 5 = 3。符合条件的最小的K = 23。 Input 第1行:1个数N表示后面输入的质数及模的数量。(2 <= N <= 10) 第2 - N + 1行,每行2个数P和M,中间用空格分隔,P是质数,M是K % P的结果。(2 <= P <= ...原创 2018-07-20 14:59:57 · 236 阅读 · 0 评论 -
乘法逆元 (51nod 1256)
给出2个数M和N(M < N),且M与N互质,找出一个数K满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的。 Input 输入2个数M, N中间用空格分隔(1 <= M < N <= 10^9) Output 输出一个数K,满足0 < K < N且K * M % N = 1,如果有多个满足条件的,输出最小的...原创 2018-07-20 15:03:42 · 169 阅读 · 0 评论 -
莫比乌斯函数 (51Nod - 1240)
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。(据说,高斯(Gauss)比莫比乌斯早三十年就曾考虑过这个函数)。 具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n...原创 2018-07-28 10:47:44 · 346 阅读 · 0 评论 -
莫比乌斯函数之和(51nod 1244)
莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下: 如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。 如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(3...转载 2018-07-28 11:19:34 · 613 阅读 · 0 评论 -
Lucas定理
这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了。比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了。 对于一个组合数C(n,k),它等于 n! / ( k! * ( n - k)! ) 我们要求一个mod。但是我们知道的同余定理是在 + - * 这三个运算中使用的,对于除法我们不能轻易的使用同余定理。如果我们能把除数(分母)转化为...转载 2018-08-01 10:52:55 · 274 阅读 · 0 评论 -
Longge's problem
Description Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N <...原创 2018-09-13 08:17:48 · 235 阅读 · 0 评论