145. 二叉树的后序遍历

文章讲述了如何使用递归和迭代方法实现二叉树的后序遍历,包括两种解法的代码实现、时间复杂度分析(O(n)),以及空间复杂度分析(平均O(logn),最坏O(n))。
摘要由CSDN通过智能技术生成

给你一棵二叉树的根节点 root ,返回其节点值的 后序遍历 

示例 1:

输入:root = [1,null,2,3]
输出:[3,2,1]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点的数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

解法:

本人解法:

同上题,采用递归的方法,只改变hasNextNode方法中的遍历顺序即可

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<>();
        if (root == null) {
            return list;
        }

        hasNextNode(root, list);

        return list;
    }

    public void hasNextNode(TreeNode root, List<Integer> list) {
        if (root.left != null) {
            hasNextNode(root.left, list);
        }

        if (root.right != null) {
            hasNextNode(root.right, list);
        }
        
        list.add(root.val);
    }
}

官方解法:

方法二:迭代
思路与算法

我们也可以用迭代的方式实现方法一的递归函数,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其余的实现与细节都相同,具体可以参考下面的代码。

class Solution {
    public List<Integer> postorderTraversal(TreeNode root) {
        List<Integer> res = new ArrayList<Integer>();
        if (root == null) {
            return res;
        }

        Deque<TreeNode> stack = new LinkedList<TreeNode>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            if (root.right == null || root.right == prev) {
                res.add(root.val);
                prev = root;
                root = null;
            } else {
                stack.push(root);
                root = root.right;
            }
        }
        return res;
    }
}

复杂度分析

时间复杂度:

O(n),其中 n 是二叉搜索树的节点数。每一个节点恰好被遍历一次。

空间复杂度:

O(n),为迭代过程中显式栈的开销,平均情况下为 O(log⁡n),最坏情况下树呈现链状,为 O(n)。


注:官方解法部分

作者:力扣官方题解
链接:https://leetcode.cn/problems/binary-tree-postorder-traversal/solutions/431066/er-cha-shu-de-hou-xu-bian-li-by-leetcode-solution/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值