C语言-数据结构 无向图迪杰斯特拉算法(Dijkstra)邻接矩阵存储

        在迪杰斯特拉中,相比普利姆算法,是从顶点出发的一条路径不断的寻找最短路径,在实现的时候需要创建三个辅助数组,记录算法的关键操作,分别是Visited[MAXVEX]记录顶点是否被访问,教材上写的final数组但作用是一样的,然后第二个数组是TmpDistance[MAXVEX],教材使用的D数组,命名语义化较弱不太好理解,实际用途与TmpDistance一样的,用于记录算法过程中,当前顶点到达邻接顶点的最小值,Path[MAXVEX]用于记录每个顶点的前驱结点,通过它可以记录到达所有顶点路径的路线,非常巧妙!整个算法过程非常像一只长了触角的贪吃蛇,用最短的身长到达所有顶点,触手想象成每次循环中探索最短邻接顶点的操作。

 我们将创建下面的无向权值图:

84ef03cba4ba478383b338ae5884012a.png

  邻接矩阵的绘制还是手动赋值上三角,并通过矩阵对称性生成整个邻接矩阵,其中最小生成树中需要用到权值,对应原本有边的地方之前我是用1表示,现在改成边对应的权值,之前的0表示没有边,现在改成99表示为无穷,其实应该换成更大的值以确保树的边权值都小于这个最大值,但为了方便对齐显示看邻接矩阵,就使用了比本图中各边长较大的99来表示最大值。

9eefaa5c866742cbb239f5f9de2aff7d.png

        Dijkstra算法代码

//v0起点,path路径,d临时辅助最短路径数组
void Dijkstra(MGraph G, int Vstart,int TmpDistance[],int Path[]) {
	int v, w, UpcomingVex, min;
	int Visited[MAXVEX];
	//初始化所有顶点
	for (v = 0; v < G.numNodes; v++) {
		Visited[v] = FALSE;
		TmpDistance[v] = G.arc[Vstart][v];
		Path[v] = -1;
	}
	//起始点路径长度为0
	TmpDistance[Vstart] = 0;
	//起始点标记为已经被访问
	Visited[Vstart] = TRUE;
	//遍历所有顶点,总计遍历n-1次所以,主循环控制次数就从1开始,求得当前顶点Vi到达相邻结点的最近距离的顶点,并标记Visited为已经找到
	for (v = 1; v < G.numNodes; v++) {
		min = GRAPH_INFINITY; // 初始化最小距离为无穷大
		// 寻找当前未访问的顶点中距离起始点最近的顶点
		for (w = 0; w < G.numNodes; w++) {
			if (!Visited[w] && TmpDistance[w] < min) {
				UpcomingVex = w;
				min = TmpDistance[w];
			}
		}
		// 标记找到的顶点为已访问
		Visited[UpcomingVex] = true;
		// 更新从当前顶点到其他顶点的最短路径
		for (w = 0; w < G.numNodes; w++) {
			if (!Visited[w] && (min + G.arc[UpcomingVex][w] < TmpDistance[w])) {
				TmpDistance[w] = min + G.arc[UpcomingVex][w];
				Path[w] = UpcomingVex; // 记录路径
			}
		}
	}
}

打印路径函数,根据Dijkstra算法计算的Path数组进行,Path数组用到了并查集的部分思想,Dijkstra中我们所有顶点都是一个集合,-1表示前驱结点为自身即找到起点,也表示为同一个集合,搜索路径的过程需要一步一步往回查找,用到了并查集中的Find函数,比如A->B->C,我们Path数组是从C顶点出发然后根据path存储的内容找到前驱结点B然后再找到A,我这里为了方便直接用数组存储路径,逆序打印就行,也可以用栈进行存储。

// 打印从起点到各顶点的路径
void PathVexPrint(int Path[]) {
	for (int start = 0; start < MAXVEX; start++) {
		int i = start;
		char tmp[10] = "";
		int count = 0;
		// 追踪路径
		while (i >= 0) {
			tmp[count++] = 'A' + i; // 假设顶点用字母表示
			i = Path[i];
		}
		tmp[count++] = 'A'; // 添加起始点
		// 反向输出路径
		for (int j = count - 1; j >= 0; j--) {
			printf("%c", tmp[j]);
			if (j > 0) {
				printf("->");
			}
		}
		printf("\n");
	}
}

完整代码(包含邻接矩阵的创建、迪杰斯特拉算法)

#include "stdio.h"    
#include "stdlib.h"   
#include "math.h"  
#include "time.h"

// 禁用特定的警告
#pragma warning(disable:4996)

// 定义一些常量和数据类型
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXVEX 8 /* 最大顶点数,用户定义 */
#define MAXEDGE 10 /* 最大边数,用户定义 */
#define GRAPH_INFINITY 99 /* 用0表示∞,表示不存在边 */

/* 定义状态、顶点和边的类型 */
typedef int Status;  /* Status是函数的返回类型,如OK表示成功 */
typedef char VertexType; /* 顶点的类型,用字符表示 */
typedef int EdgeType; /* 边上的权值类型,用整数表示 */
typedef int Boolean; /* 布尔类型 */
// 定义顶点标签
char Array[] = "ABCDEFGHI";

/* 图的邻接矩阵结构体 */
typedef struct
{
	VertexType vexs[MAXVEX]; /* 顶点表 */
	EdgeType arc[MAXVEX][MAXVEX]; /* 邻接矩阵,表示边的权值 */
	int numNodes, numEdges; /* 图中当前的顶点数和边数 */
} MGraph;

/* 创建一个无向网图的邻接矩阵表示 */
void CreateMGraph(MGraph* G)
{
	int i, j, k, w;

	// 初始化图的顶点数和边数
	G->numNodes = 8;
	G->numEdges = 10;



	// 初始化邻接矩阵和顶点表
	for (i = 0; i < G->numNodes; i++) {
		for (j = 0; j < G->numNodes; j++) {
			G->arc[i][j] = GRAPH_INFINITY; /* 初始化邻接矩阵为∞ */
		}
		G->vexs[i] = Array[i]; /* 初始化顶点表 */
	}

	G->arc[0][0] = GRAPH_INFINITY;
	G->arc[0][1] = 10;
	G->arc[0][2] = GRAPH_INFINITY;
	G->arc[0][3] = GRAPH_INFINITY;
	G->arc[0][4] = GRAPH_INFINITY;
	G->arc[0][5] = 11;
	G->arc[0][6] = GRAPH_INFINITY;
	G->arc[0][7] = GRAPH_INFINITY;

	G->arc[1][0] = GRAPH_INFINITY;
	G->arc[1][1] = GRAPH_INFINITY;
	G->arc[1][2] = 23;
	G->arc[1][3] = GRAPH_INFINITY;
	G->arc[1][4] = GRAPH_INFINITY;
	G->arc[1][5] = GRAPH_INFINITY;
	G->arc[1][6] = 12;
	G->arc[1][7] = GRAPH_INFINITY;

	G->arc[2][0] = GRAPH_INFINITY;
	G->arc[2][1] = GRAPH_INFINITY;
	G->arc[2][2] = GRAPH_INFINITY;
	G->arc[2][3] = 21;
	G->arc[2][4] = GRAPH_INFINITY;
	G->arc[2][5] = GRAPH_INFINITY;
	G->arc[2][6] = GRAPH_INFINITY;
	G->arc[2][7] = GRAPH_INFINITY;

	G->arc[3][0] = GRAPH_INFINITY;
	G->arc[3][1] = GRAPH_INFINITY;
	G->arc[3][2] = GRAPH_INFINITY;
	G->arc[3][3] = GRAPH_INFINITY;
	G->arc[3][4] = GRAPH_INFINITY;
	G->arc[3][5] = GRAPH_INFINITY;
	G->arc[3][6] = GRAPH_INFINITY;
	G->arc[3][7] = 11;

	G->arc[4][0] = GRAPH_INFINITY;
	G->arc[4][1] = GRAPH_INFINITY;
	G->arc[4][2] = GRAPH_INFINITY;
	G->arc[4][3] = GRAPH_INFINITY;
	G->arc[4][4] = GRAPH_INFINITY;
	G->arc[4][5] = 47;
	G->arc[4][6] = GRAPH_INFINITY;
	G->arc[4][7] = 80;

	G->arc[5][0] = GRAPH_INFINITY;
	G->arc[5][1] = GRAPH_INFINITY;
	G->arc[5][2] = GRAPH_INFINITY;
	G->arc[5][3] = GRAPH_INFINITY;
	G->arc[5][4] = GRAPH_INFINITY;
	G->arc[5][5] = GRAPH_INFINITY;
	G->arc[5][6] = 6;
	G->arc[5][7] = GRAPH_INFINITY;

	G->arc[6][0] = GRAPH_INFINITY;
	G->arc[6][1] = GRAPH_INFINITY;
	G->arc[6][2] = GRAPH_INFINITY;
	G->arc[6][3] = GRAPH_INFINITY;
	G->arc[6][4] = GRAPH_INFINITY;
	G->arc[6][5] = GRAPH_INFINITY;
	G->arc[6][6] = GRAPH_INFINITY;
	G->arc[6][7] = 8;

	G->arc[7][0] = GRAPH_INFINITY;
	G->arc[7][1] = GRAPH_INFINITY;
	G->arc[7][2] = GRAPH_INFINITY;
	G->arc[7][3] = GRAPH_INFINITY;
	G->arc[7][4] = GRAPH_INFINITY;
	G->arc[7][5] = GRAPH_INFINITY;
	G->arc[7][6] = GRAPH_INFINITY;
	G->arc[7][7] = GRAPH_INFINITY;

	// 由于是无向图,邻接矩阵是对称的,需要将其对称
	for (int i = 0; i < G->numNodes; i++) {
		for (int j = 0; j < G->numNodes; j++) {
			G->arc[j][i] = G->arc[i][j];
		}
	}

	// 打印邻接矩阵
	printf("邻接矩阵为:\n");
	printf("     ");
	for (int i = 0; i < G->numNodes; i++) {
		printf("%2d ", i); /* 打印列索引 */
	}
	printf("\n     ");
	for (int i = 0; i < G->numNodes; i++) {
		printf("%2c ", G->vexs[i]); /* 打印顶点标签 */
	}
	printf("\n");
	for (int i = 0; i < G->numNodes; i++) {
		printf("%2d", i); /* 打印行索引 */
		printf("%2c ", G->vexs[i]); /* 打印顶点标签 */
		for (int j = 0; j < G->numNodes; j++) {
			if (G->arc[i][j] != 99) {
				printf("\033[31m%02d \033[0m", G->arc[i][j]); /* 打印邻接矩阵中的权值 */
			}
			else {
				printf("%02d ", G->arc[i][j]); /* 打印邻接矩阵中的权值 */
			}
		}
		printf("\n");
	}
}

//v0起点,path路径,d临时辅助最短路径数组
void Dijkstra(MGraph G, int Vstart,int TmpDistance[],int Path[]) {
	int v, w, UpcomingVex, min;
	int Visited[MAXVEX];
	//初始化所有顶点
	for (v = 0; v < G.numNodes; v++) {
		Visited[v] = FALSE;
		TmpDistance[v] = G.arc[Vstart][v];
		Path[v] = -1;
	}
	//起始点路径长度为0
	TmpDistance[Vstart] = 0;
	//起始点标记为已经被访问
	Visited[Vstart] = TRUE;
	//遍历所有顶点,总计遍历n-1次所以,主循环控制次数就从1开始,求得当前顶点Vi到达相邻结点的最近距离的顶点,并标记Visited为已经找到
	for (v = 1; v < G.numNodes; v++) {
		min = GRAPH_INFINITY; // 初始化最小距离为无穷大
		// 寻找当前未访问的顶点中距离起始点最近的顶点
		for (w = 0; w < G.numNodes; w++) {
			if (!Visited[w] && TmpDistance[w] < min) {
				UpcomingVex = w;
				min = TmpDistance[w];
			}
		}
		// 标记找到的顶点为已访问
		Visited[UpcomingVex] = true;
		// 更新从当前顶点到其他顶点的最短路径
		for (w = 0; w < G.numNodes; w++) {
			if (!Visited[w] && (min + G.arc[UpcomingVex][w] < TmpDistance[w])) {
				TmpDistance[w] = min + G.arc[UpcomingVex][w];
				Path[w] = UpcomingVex; // 记录路径
			}
		}
	}
}
// 打印从起点到各顶点的路径
void PathVexPrint(int Path[]) {
	for (int start = 0; start < MAXVEX; start++) {
		int i = start;
		char tmp[10] = "";
		int count = 0;
		// 追踪路径
		while (i >= 0) {
			tmp[count++] = 'A' + i; // 假设顶点用字母表示
			i = Path[i];
		}
		tmp[count++] = 'A'; // 添加起始点
		// 反向输出路径
		for (int j = count - 1; j >= 0; j--) {
			printf("%c", tmp[j]);
			if (j > 0) {
				printf("->");
			}
		}
		printf("\n");
	}
}

// 打印数组内容
void InfoPrint(int info[]) {
	printf("\n");
	for (int i = 0; i < MAXVEX; i++) {
		printf("%d ", info[i]);
	}
	printf("\n");
}
int main(void)
{
	MGraph G;
	/* 创建图 */
	CreateMGraph(&G);
	int TmpDistance[MAXVEX],Path[MAXVEX];
	Dijkstra(G, 0, TmpDistance,Path);
	printf("到达各顶点最短路径的长度(TmpDistance数组)为:\n");
	printf("A  B  C  D  E  F  G  H  ");
	InfoPrint(TmpDistance);
	printf("Path的值为:");
	InfoPrint(Path);
	printf("A顶点出发到达各顶点的路径如下:\n");
	PathVexPrint(Path);
	return 0;
}

无向图示意图:

84ef03cba4ba478383b338ae5884012a.png

运行结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值