Flink
数据同步先行者- FlinkX
FlinkX是一款基于Flink的分布式离线/实时数据同步插件,可实现多种异构数据源高效的数据同步,其由袋鼠云于2016年初步研发完成,目前有稳定的研发团队持续维护,已在Github上开源(开源地址详见文章末尾)。并于今年6年份,完成批流统一,离线计算与流计算的数据同步任务都可基于FlinkX实现。
FlinkX将不同的数据源库抽象成不同的Reader插件,目标库抽象成不同的Writer插件,具有以下特点:
- 基于Flink开发,支持分布式运行;
- 双向读写,某数据库既可以作为源库,也可以作为目标库;
- 支持多种异构数据源,可实现MySQL、Oracle、SQLServer、Hive、Hbase等近20种数据源的双向采集。
- 高扩展性,强灵活性,新扩展的数据源可与现有数据源可即时互通。
从我个人的理解上,Connector
是连接各个数据源的连接器,它屏蔽了一系列的组件兼容问题,实现统一的数据源连接与数据实体的抽象,就是为了数据通道而生的基础设施,而目前数据通道做的比较全的就是DataX
。
DataX 是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL、Oracle等)、HDFS、Hive、ODPS、HBase、FTP等各种异构数据源之间稳定高效的数据同步功能。
DataX
本身作为离线数据同步框架,将数据源读取和写入抽象成为Reader/Writer
插件,纳入到整个同步框架中。
Reader
:Reader为数据采集模块,负责采集数据源的数据,将数据发送给Framework。Writer
: Writer为数据写入模块,负责不断向Framework取数据,并将数据写入到目的端。Framework
:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题。
而在Flink
的生态圈里面与DataX
对标的就是FlinkX
,有可能就是同一批开发人员。
FlinkX
现有功能
-
支持离线(
MySQL、Hbase、MongoDB、Redis、Hive
等25种数据源)与**实时(kafka
、mysql
等)**数据同步 -
大部分插件支持并发读写数据,可以大幅度提高读写速度;
-
部分插件支持失败恢复的功能,可以从失败的位置恢复任务,节约运行时间;
-
关系数据库的Reader插件支持间隔轮询功能,可以持续不断的采集变化的数据;
-
部分数据库支持开启Kerberos安全认证;
-
可以限制reader的读取速度,降低对业务数据库的影响;
-
可以记录writer插件写数据时产生的脏数据;
-
可以限制脏数据的最大数量;
-
支持多种运行模式;
所以对于Flink Connector
的支持较好的应该就是非FlinkX
莫属了。
底层实现
在使用DataX
的时候,DataX
是一个单机同步工具,核心底层通道的分布式支持不友好。
因为作为同步通道插件,意味着整个同步过程一定要高性能,高并发,高可靠性。并支持增量同步、断点续传和实时采集。
就同步的场景:
比如说同步一张表,如果我们的分片策略合理的话,是可以再Source和Target的理论性能下面,增加多个数据管道来增加同步性能的。每个管道同步不同的分片。
而Flink
就刚好补齐了这个短板。
图片来自于社区
下面从增量同步、断点续传和实时采集三个方面简单解释一下FlinkX
的实现方式。
增量同步
增量同步指每次记录最大值,下次从最大值的位置来同步。
累加器是具有添加操作和最终累积结果的简单构造,可在作业结束后使用。
从Flink的实现上面讲,可以使用Flink的累加器记录作业的最大值,同步任务的每次运行使用上一个任务实例作为起始位置同步。
断点续传
断点续传指的是当同步任务同步过程出现同步错误,不需要重新从头开始同步,只需要从上次失败的地方从新开始同步即可。降低了同步的成本。
从哪里跌倒就从哪里爬起来,不需要从起跑线重新开始。
从实现原理上就是要实时的记录同步的位置,下次读取上次同步的记录。在Flink
上面就是CheckPoint
的机制,简直就是很契合。
CheckPoint
是FLink
实现容错机制最核心的功能,通过异步轻量级的分布式快照实现。分布式快照可以将同一时间点的Task/Operator的状态数据全局统一快照处理。
如上图,Flink
会将数据集间隔性的生成checkpoint barrier,通过barrier分割数据,将两个barrier之间的数据保存为一个CheckPoint
。当应用出现异常的时候,可以从上一次快照中,恢复所有的状态。
实时采集
实时采集就是指的实时数据同步,当数据源李的数据发生增删改查操作的时候,同步任务监听到这些变化,将辩护的数据实时同步到目标数据源,并且因为实时同步的特性,同步任务会一致驻留进程,不会停止。一般会采用kafka作为实时采集工具。在这里FlinkX支持了mysql-binlog
和mongodb-oplog
采集。
实时采集的难点在于:对于修正数据的更新策略,比如是更新旧数据,如果是大批量的数据,对目标数据源的压力会特别大,怎么做更新策略就是一个难点,据我所知的目前用的大多数都是不考虑修正数据。只是append,使用lambda架构的还比较多,采用离线跑批定时修正结果。Flink 后续Api规划支持流批一体,对开发与运维是一个好消息。
FlinkX应用场景
FllikX数据同步插件主要应用于大数据开发平台的数据同步/数据集成模块,通常采用将底层高效的同步插件和界面化的配置方式相结合的方式,使大数据开发人员可简洁、快速的完成数据同步任务开发。实现将业务数据库的数据同步至大数据存储平台,从而进行数据建模开发,以及数据开发完成后,将大数据处理好的结果数据同步至业务的应用数据库,供企业数据业务使用。
FlinkX工作原理详解
FlinkX基于Flink实现,其选型及优势详见https://mp.weixin.qq.com/s/uQbGLY3_cj0h2H_PZZFRGw。FlinkX数据同步任务的本质是一个Flink程序,读出写入的数据同步任务会被翻译成StreamGraph在Flink执行,FlinkX开发者只需要关注InputFormat和OutputFormat接口实现即可。工作原理如下:
Engine是袋鼠云封装的任务调度引擎,WEB端配置好的数据同步任务首先会提交至任务调度引擎,Template模块根据同步任务的配置信息加载源数据库和目标数据库对应的Reader和 Writer插件,Reader插件实现InputFormat接口,从数据库获取DataStream对象,Writer插件实现OutFormat接口,将目标数据库与DataStream对象相关联,从而通过DataStream对象将读出写入串接在一起,组装成一个Flink任务提交至Flink集群上进行运行。
之前基于Flink的分片、累加器特性,解决了数据同步过程中的增量同步、多通道控制、脏数据管理与错误管理等场景。最近半年基于Flink的checkpoint机制,实现了断点续传、流数据续跑等功能,来了解一下它的新特性吧。
(1)断点续传
数据同步过程中,假如一个任务要同步500G的数据到目标库,已经跑了15min,但到400G的时候由于集群资源不够、网络等因素数据同步失败了,若需要重头跑此任务,想必该同学要抓狂了。FlinkX基于checkpoin机制可支持断点续传,当同步任务由于上述原因失败时,不需要重跑任务,只需从断点继续同步,节省重跑时间和集群资源。
Flink的Checkpoint功能是其实现容错的核心功能,它能够根据配置周期性地对任务中的Operator/task的状态生成快照,将这些状态数据定期持久化存储下来,当Flink程序一旦意外崩溃时,重新运行程序时可以有选择地从这些快照进行恢复,从而修正因为故障带来的程序数据异常。
并且断点续传可和任务失败重试机制配合,即当任务执行失败,系统会自动进行重试,若重试成功则系统会接着断点位置继续同步,从而减少人为运维。
(2)实时采集与续跑
今年6月份,袋鼠云数栈研发团队基于FlinkX实现批流数据采集统一,可对MySQL Binlog、Filebeats、Kafka等数据源进行实时采集,并可写入Kafka、Hive、HDFS、Greenplum等数据源,采集任务也支持作业并发数与作业速率的限制,以及脏数据管理。并基于checkpint机制,可实现实时采集任务的续跑。当产生业务数据或Flink程序引起的采集进程中断时,可基于Flink定期存储的快照,对流数据的读取节点进行保存,从而在进行故障修复时,可选择历史保存的数据断点进行续跑操作,保证数据的完整性。此功能在袋鼠云的StreamWorks产品中实现,欢迎大家了解。
(3)流数据的脏数据管理
之前在BatchWorks离线计算产品中,已实现离线数据同步的脏数据管理,并基于Flink的累加器实现脏数据的错误管理,当错误量达到配置时,置任务失败。目前流数据实时采集也支持了此功能,即在将源库数据写入目标库的过程中,将错误记录进行存储,以便后续分析数据同步过程中的脏数据,并进行处理。但由于是流数据采集,任务具有不间断性,没有进行错误数记录达到阈值的触发任务停止操作,待后续用户自行对脏数据分析,进行处理。
(4)数据写入至Greenplum、Oceanbase数据源
Greenplum是基于PostgreSQL的MPP数据库,支持海量数据的存储与管理,目前在市场上也被很多企业采用。于最近,数栈基于FlinkX实现多类型数据源写入Greenplum,除全量同步外,也支持部分数据库增量同步写入。OceanBase是阿里研发的一款可扩展的金融领域关系型数据库,其用法与MySQL基本一致,实现OceanBase的数据读入写出也是基于jdbc的连接方式,进行数据表与字段的同步与写入,也支持对OceanBase进行增量写入,以及作业同步通道、并发的控制。
写入Greenplum等关系数据库时,默认是不使用事务的,因为数据量特别大的情况下,一旦任务失败,就会对业务数据库产生巨大的影响。但是在开启断点续传的时候必须开启事务,如果数据库不支持事务,则无法实现断点续传的功能。开启断点续传时,会在Flink生成快照的时候提交事务,把当前的数据写入数据库,如果两次快照期间任务失败了,则这次事务里的数据不会写入数据库,任务恢复时从上一次快照记录的位置继续同步数据,这样就可以做到任务多次失败续跑的情况下准确的同步数据。
FlinkX开源地址:https://github.com/DTStack/flinkx
若需了解具体技术实现,详见https://mp.weixin.qq.com/s/VknlH8L2kpnlcJ3990ZkUw
总结
本文主要是针对于认识到了Flink
与DataX
结合之后,对数据同步的一些新想法和感知。现在很多开源工具的特点就是它仅仅是个工具,它是没有一个技术生态与应用生态,从应用者的角度更关注与作业的开发与作业管控,从作业开发上来看,目前FlinkX
和DataX
的采用的都是Json配置的方式,没有一个开发工具。看FlinkX
的后续规划是有元数据管理、作业归档的。而我们公司的数据管控、数据开发就是从某种程度上面补齐了一个这样的短板。