架构
文章平均质量分 86
꧁꫞ND꫞꧂
每一天都值得期待与认证对待
展开
-
领域驱动架构DDD(Domain-Driven Design)
DDD会让你首先考虑业务语言,而不是数据。领域模型并不完成业务,每个domain object都是完成属于自己应有的行为(single responsibility),就如同人跑这个动作,person.run是一个与业务无关的行为,但这个时候manger或者service在调用 some person.run的时候可能完成的100米比赛这个业务,也可能是完成跑去送外卖这个业务。领域模型对应的是业务实体,在程序中主要表现为类、聚合根和值对象,它更加关注业务语义的显性化表达,而不是数据的存储和数据之间的关系。.转载 2022-08-25 20:23:51 · 539 阅读 · 0 评论 -
编程的智慧
编程的智慧编程是一种创造性的工作,是一门艺术。精通任何一门艺术,都需要很多的练习和领悟,所以这里提出的“智慧”,并不是号称一天瘦十斤的减肥药,它并不能代替你自己的勤奋。然而由于软件行业喜欢标新立异,喜欢把简单的事情搞复杂,我希望这些文字能给迷惑中的人们指出一些正确的方向,让他们少走一些弯路,基本做到一分耕耘一分收获。反复推敲代码有些人喜欢炫耀自己写了多少多少万行的代码,仿佛代码的数量是衡量编程水平的标准。然而,如果你总是匆匆写出代码,却从来不回头去推敲,修改和提炼,其实是不可能提高编程水平的。你转载 2022-05-06 19:49:49 · 424 阅读 · 1 评论 -
实时数仓之 Kappa 架构与 Lambda 架构
数仓2021 年 1月份,给大家重点分享一下离线数仓与实时数仓的内容。今天,我们先了解一下数据仓库架构的演变过程,本文主要从五个方面进行介绍 数据仓库概念 离线大数据架构 Lambda 架构 Kappa 架构 Lambda 架构与 Kappa 架构的对比 1 数据仓库概念数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合转载 2022-04-08 12:42:52 · 425 阅读 · 0 评论 -
一种避免递归查询所有子部门的树数据表设计与实现
01、问题来了 02、查出所有子孙部门 03、查询子孙部门总数 04、判断是否叶子节点 05、要不试试这个方法? 06、查出所有子孙部门 07、查询子孙部门总数 08、判断是否叶子节点 09、其他基本操作 10、新增部门 11、删除部门 12、查询直接子部门 13、查询祖链路径 14、树形数据展示(JS示例) ...转载 2022-04-08 10:57:56 · 769 阅读 · 0 评论 -
大数据架构了解迭代
一、首先介绍几种常见的架构批流一体架构面临的挑战传统架构数据仓库的架构随着业务分析实时化的需求也在不断演进,但在数据分析平台的最初起步阶段,为了满足实时分析需求,传统方案的做法一般都会将实时分析和历史批量数据分析拆分成2种不同的独立架构,形成如下图片所示的异构环境:在这样完全不同的独立异构环境下,不管是从部署架构层面,还是从数据存储介质层面都可以说是完全不一致的,这就使得在技术实现上面临比较大的挑战。分别维护实时分析与离线分析两套不同架构的服务,对于系统运行的稳定性,后续应用升级,故障处原创 2021-11-09 17:17:35 · 2145 阅读 · 0 评论 -
架构的理解
前言:在这个知识分享的爆炸时代,鉴于java生态的完整和繁荣,各种框架、中间件和工具包供我们使用。连新培训出来的人都知道ssm,微服务、集群、多线程、队列、高并发等技术,技术的间隔性正变得越来越小,仿佛我们只需要按部就班的去使用别人说的框架等技术就可以解决问题.如果刨除redis、rabbitmq、kafka、dubbo、springcloud这些具体的技术框架,你有没有静下心来真正思考过架构是什么呢?这些框架是究竟是扮演怎么样的角色?如果让你给架构下一个定义,你会选择如何去描述架构呢?背景: 从当时流行原创 2021-09-14 15:40:46 · 391 阅读 · 0 评论 -
什么是数据湖
什么是数据湖?数据湖是一个集中式存储库,允许以任意规模存储所有结构化和非结构化数据。您可以按原样存储数据(无需先对数据进行结构化处理),并运行不同类型的分析 – 从控制面板和可视化到大数据处理、实时分析和机器学习,以指导做出更好的决策。关于数据湖的定义确实是一个业界有较多争议的地方。狭义的数据湖指的是数据湖存储,即可以存放海量数据(各种格式)的地方,包括 Hadoop 的文件系统 HDFS 或者云上的对象存储系统 S3 都属于这个范畴。广义的数据湖除了数据湖存储,还包括数据湖的管理和分析,即提供一整原创 2021-09-14 15:01:39 · 3940 阅读 · 0 评论 -
指标体系搭建
指标体系搭建一个好的数据指标体系可以助力业务快速的解构业务、理解业务、发现业务问题,快速定位原因,并且找到最合适的解决方案。因此学习搭建一个好的数据指标体系是数据助力业务决策的灵魂。本文会从四个方向来进行相对应的展开和论述:首先我们来看下,为什么需要一个好的数据指标体系,好的数据指标体系和大家日常看见的这些数据指标到底有什么区别?然后看下,到底什么是一个好的数据指标体系,它的基准是什么?在有了目标和基准之后,我们会聊聊如何进行一个好的数据指标体系的建设;最后,会做一个简单的回顾,以及未来工作的延展。转载 2021-09-09 21:50:29 · 615 阅读 · 0 评论 -
数据治理的架构图
收敛数据,统一管理元数据原创 2021-08-30 06:44:03 · 2244 阅读 · 0 评论 -
Docker 和 Kubernetes了解一下
1.Docker1.什么是 DockerDocker 是一个开源的应用容器引擎,是一种资源虚拟化技术,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上。虚拟化技术演历路径可分为三个时代: 物理机时代,多个应用程序可能跑在一台物理机器上 虚拟机时代,一台物理机器启动多个虚拟机实例,一个虚拟机跑多个应用程序 容器化时代,一台物理机上启动多个容器实例,一个容器跑多个应用程序 在没有 Docker 的时代,我们会使用硬件虚拟化(转载 2021-07-28 22:42:00 · 409 阅读 · 0 评论 -
bitmap灵活存储思维
数据仓库的数据统计,可以归纳为三类:增量类、累计类、留存类。而累计类又分为历史至今的累计与最近一段时间内的累计(比如滚动月活跃天,滚动周活跃天,最近 N 天消费情况等),借助 bitmap 思想统计的模型表可以快速统计最近一段时间内的累计类与留存类。一、背景数据仓库的数据统计,可以归纳为三类:增量类、累计类、留存类。而累计类又分为历史至今的累计与最近一段时间内的累计(比如滚动月活跃天,滚动周活跃天,最近 N 天消费情况等),借助 bitmap 思想统计的模型表可以快速统计最近一段时间内的累计类与.转载 2021-06-03 14:17:27 · 513 阅读 · 0 评论 -
数据湖的了解认识
数据湖概述数据湖这一概念,最早是在2011年由CITO Research网站的CTO和作家Dan Woods首次提出。其比喻是:如果我们把数据比作大自然的水,那么各个江川河流的水未经加工,源源不断地汇聚到数据湖中。业界便对数据湖一直有着广泛而不同的理解和定义。“数据湖是一个集中化存储海量的、多个来源,多种类型数据,并可以对数据进行快速加工,分析的平台,本质上是一套先进的企业数据架构。”"数据湖"的核心价值在于为企业提供了数据平台化运营机制。随着DT时代的到来,企业急需变革,需要利用信息化、数字化转载 2021-05-17 21:19:36 · 834 阅读 · 0 评论 -
设计模式-装饰者模式(Decorator)
案例:看一个项目需求 咖啡馆订单系统项目(咖啡馆): 咖啡种类/单品咖啡:Espresso(意大利浓咖啡)、ShortBlack、LongBlack(美式咖啡)、Decaf(无因咖啡) 调料:Milk、Soy(豆浆)、Chocolate 要求在扩展新的咖啡种类时,具有良好的扩展性、改动方便、维护方便 使用OO的来计算不同种类咖啡的费用: 客户可以点单品咖啡,也可以单品咖啡+调料组合。Drink 是一个抽象类,表示饮料 description就是描述,比如咖啡的名字等 cost就是计算费用,是一.原创 2020-06-21 17:13:44 · 176 阅读 · 0 评论 -
单例模式读取配置文件
在读取配置文件的时候,如果我们写一个普通的Java 类,在调用的时候可能会多次的加载执行。但是例如配置文件啊,属性加载啊这些的数据,我们都是提前配置好的,不会经常改动,只需要在用的时候加载一次即可,那么我们可以使用单例模式实现这个功能。package com.test.connect.hive;import java.io.InputStream;import java.io.InputStreamReader;import java.util.Objects;import java.u原创 2020-11-25 15:48:30 · 1350 阅读 · 0 评论 -
数据中台科普科普
01 数据中台定义数据中台是一种将企业沉睡的数据变成数据资产,持续使用数据、产生智能、为业务服务,从而实现数据价值变现的系统和机制。通过数据中台提供的方法和运行机制,形成汇聚整合、提纯加工、建模处理、算法学习,并以共享服务的方式将数据提供给业务使用,从而与业务联动。再者,结合业务中台的数据生产能力,最终构建数据生产—消费—再生的闭环。为了更好地理解数据中台,我们将其与数据仓库、数据湖、BI、大数据等相关概念进行对比。1. 与数据仓库的对比数据仓库是一个面向主题的、集成的、相对稳定的、反映历史转载 2020-11-12 15:39:35 · 326 阅读 · 0 评论 -
几种大数据架构的了解
数据分析工作虽然隐藏在业务系统背后,但是具有非常重要的作用,数据分析的结果对决策、业务发展有着举足轻重的作用。随着大数据技术的发展,数据挖掘、数据探索等专有名词曝光度越来越高,但是在类似于Hadoop系列的大数据分析系统大行其道之前,数据分析工作已经经历了长足的发展,尤其是以BI系统为主的数据分析,已经有了非常成熟和稳定的技术方案和生态系统,对于BI系统来说,大概的架构图如下:可以看到...转载 2019-10-11 14:16:31 · 280 阅读 · 0 评论