POI输出Excel表格

package com.sogou.map.autocheck.navposcheck.main; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.util...

2019-06-17 17:00:53

阅读数 4

评论数 0

Sklearn.metrics评估方法介绍

在介绍指标之前,先回顾一下很重要的四个概念,可以说指标总是围绕着这四个来计算的。 真实 1 真实 0 预测 1 true positive false positive 预测 0 false negative true negative 记忆小技巧:true/false ...

2019-05-10 11:17:09

阅读数 145

评论数 0

Word2Vec之数学原理推导

对word2vec不了解的可以先看看这篇Word2vec入门 网上很多word2vec的前向传播和反向传播给出的推导都不是很好理解,而且对于不太同种的实现方式也没有具体说明,所以一直想把这部分的坑填上,参考了网上的一篇优秀博客天空的城:Word2vec数学原理全家桶,对其做了进一步解释和修正。 O...

2019-04-22 16:15:36

阅读数 29

评论数 0

句子相似度常见的计算方法

原文地址:静觅»自然语言处理中句子相似度计算的几种方法 在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题,那么本节就来了解一下怎么样来用 Python 实现句子相似度的计算。 基本方...

2019-04-22 13:21:00

阅读数 82

评论数 0

【译】Parsing C++ in Python with Clang

本文不是全部翻译,仅仅针对重要内容,添加了一些的实战经验,方便日后查阅 Clang开发团队意识到,Clang不仅仅可以被用来作为编译器,还可以作为分析C/C++/Objc代码的工具。事实上苹果自带的Xcode代码编译底层用的就是Clang。 libclang是clang一个强大的开发接口,本质上是...

2019-04-09 18:14:48

阅读数 51

评论数 0

康托编码与解码

原文地址:https://blog.csdn.net/neutre/article/details/78065633 对于一个集合 {1,2,3,…,n},很明显它有 n! 种全排列, 把它们全都按照字典序排好序(从小到大),对应顺序{1,2,3,…,n!}, 假如问你第X个全排列是什么,或者某...

2019-03-05 20:43:04

阅读数 54

评论数 0

ubuntu16.04搭建cuda9.0+cudnn7.0.5环境

在安装cuda之前,最重要的就是检查你的显卡是不是支持cuda安装版本。官网给出说明是只要在cuda支持显卡列表里的显卡就可以,但是我的显卡NVS 310虽然在,安装cuda以后会报错,因为显卡不支持。所以我猜测这个显卡或许可以支持低版本的cuda。 官网的安装文档:https://docs.nv...

2019-01-15 17:44:05

阅读数 247

评论数 0

Word2Vec入门

本文是对原文地址的翻译 word2vec是一个用来处理文本的二层神经网络,它的输入是一个文本集,输出是一系列集合,这个集合是与文本集是对应的。明显word2vec不是一个深度学习网络,它只是将文本转化为深度网络可以理解的数值化格式。 deeplwarning4j实现了一个分布式的Word2vec ...

2018-12-15 20:52:55

阅读数 79

评论数 0

TensorFlow(八)TFRecords使用方法与实例

这篇文章介绍如何将大量数据存储为TFRecords格式的文件,然后将TFRecords格式的文件按批次处理的方式引入代码中,用来训练你的模型。 本文借鉴了 link中的大部分内容,加上自己的理解和对代码中用到的库的补充说明。 TFRecords 是 Tensorflow standard fo...

2018-12-14 21:17:47

阅读数 107

评论数 0

Multi-Task Learning & Multiclass classification

最开始接触的机器学习问题就是 “ Is this a cat or not ” ,这是极具有代表性的一个二分类问题(Binary or binomial classification),二分类体现在数据的标签上就是0/1,一张图片作为输入X,对于监督学习而言,他的标签Y就是一个数字0/1,后面讲到...

2018-12-12 18:40:26

阅读数 64

评论数 0

Tensorflow(七)Retrain Google Inception V3

1.下载Inception V3模型 Download-Link 在tensorflow官网中可以直接下载,下载完压缩包以后解压,注意不要删除这个压缩包,后面可能会用到,然后在同目录下创建一个log文件夹,这些步骤可以手动完成,也可以用下面的python语句执行。 # coding: utf-...

2018-12-10 23:21:44

阅读数 198

评论数 0

基于JS实现表单的自动验证功能

注:本文代码是在Github上找到的源码,在此基础上进行了修改。 表单验证的功能是通过JS代码实现的,在作者的验证JS代码中有已经设定好的数据格式,使用的是正则表达式,如果你想要设置自己的数据格式,可以在js文件最后找到datatype进行修改。作者的后端代码使用的是php,我修改为JAVA,这...

2018-11-21 22:22:30

阅读数 311

评论数 0

Tensorflow(六)使用LSTM对MNIST数据集进行分类

对于RNN和LSTM不了解的朋友,可以去看看这两篇入门介绍,写的非常棒,在此特别感谢两位作者!! RNN入门:https://zhuanlan.zhihu.com/p/28054589 LSTM入门:http://colah.github.io/posts/2015-08-Understand...

2018-11-20 17:29:51

阅读数 119

评论数 0

关于BP算法和梯度下降

最开始学习神经网络,感触最深的就是BP算法,当时只用到却没有好好体会它背后的深意,在RNN中也会用到一个类似的算法(BPTT下面会具体讲)。对神经网络有些了解,就会熟悉BP算法由两个部分组成,向前传播和反向传播。 向前传播从输入层经过隐藏层到输出层,给出预测结果,在第一次传输过程中,使用到的权重...

2018-11-17 14:15:28

阅读数 537

评论数 0

Tensorflow(五)使用CNN对MNIST数据集进行分类

在tensorflow(二)中对MNIST数据集进行分类使用单层神经网络,梯度下降法以0.2的学习因子迭代了100次取得了92%的准确率,这个网络很简单,使用较大的学习因子也不会出现梯度爆炸或者梯度消失的情况,但是在复杂些的网络,比如这里用到的三层CNN网络使用0.2的学习因子就过大了。 本文结...

2018-11-16 14:34:56

阅读数 147

评论数 0

Tensorflow(四)Tensorboard简介

TensorBoard 简介 官网上给的定义是:The computations you'll use tensorflow for (like training a massive deep neural network ) can be complex and confusing . To ...

2018-11-11 15:01:16

阅读数 77

评论数 0

Tensorflow(三)训练一个简单卷积神经网络

这是吴恩达老师第四课第一周的编程练习,题目是分析图片中手势得到手所表示的数字。 数据集我传到github上,可以下载https://github.com/penguin219/WU_Lesson4_week1 特别要注意的是,如果你使用的是新版本的tensorflow,很有可能得到的结果和Co...

2018-11-09 20:35:26

阅读数 277

评论数 0

Tensorflow(二)MNIST数据集分类

1.获取数据集 有两种方式可以得到数据集,第一是直接通过mnist = input_data.read_data_sets('MNIST_data',one_hot = True)进行联网下载,但这个方法可能很慢或者连接不到服务器,所以推荐使用第二个,在MNIST 直接下载数据,然后放在当前路径...

2018-11-06 17:48:13

阅读数 311

评论数 0

Tensorflow(一)搭建环境可能遇到的问题

Anaconda 目前,python3.7是不支持tensorflow的,所以要学习tensorflow需要换成3.5或者3.6的版本 os是win10,以前已经安装了puthon3.6.7和jupyter,直接安装了tensorflow,后来想装一个anaconda3 5.2,anacond...

2018-11-04 19:05:46

阅读数 409

评论数 0

优化算法(一)SGD算法实现

SGD随机梯度下降算法,和最常用的GD相比,GD每一次迭代都是所有样本都一起进行计算,而SGD是每一次迭代中每个样本分别进行计算,梯度算法的最终目标是减少cost值,训练出最优的参数值,GD每一次迭代都让所有样本去优化参数,一次迭代进行一次优化,而SGD一次只让一个样本去优化参数。   贴一下...

2018-11-03 21:31:52

阅读数 411

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭