[HNOI2014]世界树

本文介绍了一种基于树状结构的DP算法实现方法,通过构建虚树并利用DFS求解节点间的控制关系,最终计算出每个标记点所控制的节点数量。文章详细解释了两遍DFS的具体过程以及如何通过倍增法找到分界点,还给出了完整的C++代码实现。
摘要由CSDN通过智能技术生成

题意:标记一些树上的点,每个点会被最近(编号最小)的标记点控制,问每个标记点会控制多少点

根据套路先搞出虚树,然后考虑怎么 DP D P

首先两遍 dfs d f s 求出虚树上每个点被那个点控制

第一遍是 dfs d f s 求最近的儿子,第二遍是考虑每个点父亲对其他儿子的贡献

所以第一遍要先 dfs d f s 儿子,第二遍要后 dfs d f s 儿子

然后对于虚树上每一条边

①:两端点被同一个点控制,直接把这两个端点所属的点的贡献加上这两个点不在虚树中的儿子的 sz s z

②:两端点被不同点控制,那么中间一定有一个分界点,使得分界点上面的点的 sz s z 属于上端点,下面属于下端点

这个分界点可以通过倍增求得,注意计算答案要把两端点的贡献去掉(开区间)

考虑怎么计算每个点 u u 不在虚树中的儿子的sz,记他是 sur[u](Surplus) s u r [ u ] ( S u r p l u s ) ,一开始等于 sz[u] s z [ u ]

对于虚树上 (u,v) ( u , v ) 这条边,倍增求出 (u,v) ( u , v ) 上原树中离 u u 最近的点s

sur[u] s u r [ u ] 减去所有的这样的 sz[s] s z [ s ] 就是点 u u 不在虚树中的儿子的sz

dp d p 完后每个点所属的点加上再这个点的剩余量就是答案了

#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=fi[u],v=e[i].to;i;v=e[i=e[i].nx].to)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
using namespace std;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){return A==B&&(B=(A=ss)+fread(ss,1,1<<17,stdin),A==B)?-1:*A++;}
template<class T>inline void sd(T&x){
    char c;T y=1;while(c=gc(),(c<48||57<c)&&c!=-1)if(c==45)y=-1;x=c-48;
    while(c=gc(),47<c&&c<58)x=x*10+c-48;x*=y;
}
char sr[1<<21],z[20];int C=-1,Z;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
template<class T>inline void we(T x){
    if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]=' ';
}
const int N=3e5+5,M=19,inf=1e9;
typedef int arr[N];
struct eg{int nx,to;}e[N<<1];
int n,m,k,ce,dft,fa[N][M];arr a,b,bl,fi,fg,sz,son,top,dep,Log,dfn,sur,ans,S;
void dfs(int u){
    dep[u]=dep[fa[u][0]]+(sz[u]=1);dfn[u]=++dft;
    for(int i=0;fa[u][i];++i)fa[u][i+1]=fa[fa[u][i]][i];
    go(u)if(v^fa[u][0]){
        fa[v][0]=u,dfs(v),sz[u]+=sz[v];
        if(sz[v]>sz[son[u]])son[u]=v;
    }
}
void dfs(int u,int t){
    top[u]=t;if(son[u])dfs(son[u],t);
    go(u)if(v^fa[u][0]&&v^son[u])dfs(v,v);
}
inline int lca(int u,int v){
    for(;top[u]^top[v];dep[top[u]]>dep[top[v]]?u=fa[top[u]][0]:v=fa[top[v]][0]);
    return dep[u]<dep[v]?u:v;
}
inline int dis(int u,int v){return dep[u]+dep[v]-2*dep[lca(u,v)];}
inline void add(int u,int v){e[++ce]={fi[u],v},fi[u]=ce;}
void dfs1(int u){int d1,d2;
    bl[u]=fg[u]?u:0;sur[u]=sz[u];
    go(u){
        dfs1(v);
        d1=dep[bl[v]]-dep[u],d2=bl[u]?dep[bl[u]]-dep[u]:inf;
        if(d1<d2||(d1==d2&&bl[v]<bl[u]))bl[u]=bl[v];
    }
}
void dfs2(int u){int d1,d2;
    go(u){
        d1=dis(bl[u],v),d2=dis(bl[v],v);
        if(d1<d2||(d1==d2&&bl[u]<bl[v]))bl[v]=bl[u];
        dfs2(v);
    }
}
void dp(int u){int s,mid,nt,d1,d2;
    go(u){
        dp(v);s=mid=v;
        fd(i,Log[dep[v]],0)if(dep[fa[s][i]]>dep[u])s=fa[s][i];
        sur[u]-=sz[s];
        if(bl[u]==bl[v]){ans[bl[u]]+=sz[s]-sz[v];continue;};
        fd(i,Log[dep[v]],0){
            nt=fa[mid][i];if(dep[nt]<=dep[u])continue;
            d1=dis(nt,bl[v]),d2=dis(nt,bl[u]);
            if(d1<d2||(d1==d2&&bl[v]<bl[u]))mid=nt;
        }
        ans[bl[u]]+=sz[s]-sz[mid];
        ans[bl[v]]+=sz[mid]-sz[v];
    }ans[bl[u]]+=sur[u];fi[u]=0;
}
inline bool cmp(const int&a,const int&b){return dfn[a]<dfn[b];}
inline void sol(){
    sd(k);fp(i,1,k)sd(a[i]),b[i]=a[i],fg[a[i]]=1;
    sort(a+1,a+k+1,cmp);static int top=1;S[1]=1;ce=0;
    fp(i,1,k){
        int x=a[i],p=lca(S[top],x);
        while(dep[p]<dep[S[top]]){
            if(dep[p]>=dep[S[top-1]]){
                add(p,S[top--]);
                if(S[top]^p)S[++top]=p;
                break;
            }add(S[top-1],S[top]),--top;
        }if(S[top]^x)S[++top]=x;
    }while(top>1)add(S[top-1],S[top]),--top;
    dfs1(1),dfs2(1);dp(1);
    fp(i,1,k)we(ans[b[i]]),fg[b[i]]=ans[b[i]]=0;sr[++C]='\n';
}
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    sd(n);int u,v;fp(i,2,n)Log[i]=Log[i>>1]+1;
    fp(i,2,n)sd(u),sd(v),add(u,v),add(v,u);
    dfs(1),dfs(1,1);sd(m);
    memset(fi,0,sizeof fi);while(m--)sol();
return Ot(),0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值