[HNOI2011]XOR和路径

题意

给你一幅无向图 , , 一条路径的权值为路径上边权的异或和

你在每个点可以等概率的走向相连的点

1n路径权值的期望(有自环重边)


一开始想偏了 , , 以为期望的异或就是异或的期望

后来发现可以按位处理


题解

整个处理显然是不行的

因为每一位都是独立的,所以考虑按位处理 , , 求出每一位是1的概率

还是按照套路 f[u] f [ u ] 表示 un u → n 的路径这一位为 1 1 的概率,dg[u]表示 u u 的出度

那么1f[u]就是 un u → n 的路径这一位为 0 0 的概率

(u,v)E f[u]=1dg[u](w(u,v)=0f[v]+w(u,v)=11f[v])

(u,v)E dg[u]f[u]=w(u,v)=0f[v]+w(u,v)=11f[v] ⇒ ∀ ( u , v ) ∈ E   d g [ u ] f [ u ] = ∑ w ( u , v ) = 0 f [ v ] + ∑ w ( u , v ) = 1 1 − f [ v ]

也就是这条边这一位是 1 1 那么vn的权值就要是 0; 0 ; 反之则为 1 1

方程即为

dg[u]f[u]w(u,v)=0f[v]+w(u,v)=1f[v]=w(u,v)=11

高斯消元即可

最后 ans=i2ifi[1] a n s = ∑ i 2 i f i [ 1 ]

注意这题虽然是无向图 , , 但是自环也不能加两次,需要特判

#include<bits/stdc++.h>
#define fp(i,a,b) for(register int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(register int i=a,I=b-1;i>I;--i)
#define go(u) for(register int i=fi[u],v=e[i].to;i;v=e[i=e[i].nx].to)
#define file(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char ss[1<<17],*A=ss,*B=ss;
inline char gc(){return A==B&&(B=(A=ss)+fread(ss,1,1<<17,stdin),A==B)?-1:*A++;}
template<class T>inline void sd(T&x){
    char c;T y=1;while(c=gc(),(c<48||57<c)&&c!=-1)if(c==45)y=-1;x=c-48;
    while(c=gc(),47<c&&c<58)x=x*10+c-48;x*=y;
}
char sr[1<<21],z[20];int C=-1,Z;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
template<class T>inline void we(T x){
    if(C>1<<20)Ot();if(x<0)sr[++C]=45,x=-x;
    while(z[++Z]=x%10+48,x/=10);
    while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=105,M=2e4+5;
const double eps=1e-9;
typedef int arr[N];
typedef double db;
struct eg{int nx,to,w;}e[M];
int n,m,Mx;arr dg,fi;db Ans,ans[N],G[N][N];
inline void build(int x){
    G[n][n]=1;
    fp(u,1,n-1){
        G[u][u]=dg[u];
        go(u)
            if(e[i].w&x)++G[u][v],++G[u][n+1];
            else --G[u][v];
    }
}
inline int cmp(db x){return fabs(x)<eps?0:x<0?-1:1;}
inline void Gauss(int n){
    db t;int mx;
    fp(i,1,n){mx=i;
        fp(j,i,n)if(cmp(G[mx][i]-G[j][i]))mx=j;
        fp(j,i+1,n)if(cmp(G[j][i])){
            t=G[j][i]/G[i][i];
            fp(k,i,n+1)G[j][k]-=G[i][k]*t;
        }
    }
    fd(i,n,1){
        fp(j,i+1,n)G[i][n+1]-=G[i][j]*ans[j];
        ans[i]=G[i][n+1]/G[i][i];
    }

    fp(i,1,n)fp(j,1,n+1)G[i][j]=0;
}
inline void add(int u,int v,int w){static int ce=0;e[++ce]={fi[u],v,w},fi[u]=ce;}
int main(){
    #ifndef ONLINE_JUDGE
        file("s");
    #endif
    sd(n),sd(m);int u,v,w;
    while(m--){
        sd(u),sd(v),sd(w),add(u,v,w),++dg[u];
        if(u^v)add(v,u,w),++dg[v];cmax(Mx,w);
    }
    for(int i=1;i<=Mx;i<<=1)
        build(i),Gauss(n),Ans+=ans[1]*i;
    printf("%.3lf\n",Ans);
return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值