【HDU】-1878-欧拉回路(并查集)

欧拉回路

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 12669    Accepted Submission(s): 4704


Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
 

Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
 

Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
 

Sample Input
  
  
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
 

Sample Output
  
  
1 0
 

Author
ZJU
 
题解:知道欧拉回路的判别方法:每个顶点的度都是偶数。且没有孤立的点


#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define CLR(a,b)  memset(a,b,siaeof(a))
int f[1010];
int num[1010];
int find(int x)
{
	if(x!=f[x])
		f[x]=find(f[x]);
	return f[x];
}
void join(int x,int y)
{
	int fx,fy;
	fx=find(x);
	fy=find(y);
	if(fx!=fy)
		f[fx]=fy;
}
int main()
{
	int n,m,root;
	while(~scanf("%d",&n)&&n)
	{
		scanf("%d",&m);
		for(int i=1;i<=n;i++)
		{
			f[i]=i;
			num[i]=0;
		}			
		int a,b;
		for(int i=1;i<=m;i++)
		{
			scanf("%d %d",&a,&b);
			join(a,b);
			num[a]++;
			num[b]++;
		}
		int flag=1;
		root=0;
		for(int i=1;i<=n;i++)
		{
			if(f[i]==i)
				root++;
			if(root>1||num[i]&1)		//根>1,说明有分开的;度数为奇数不是欧拉回路 
			{
				flag=0;
				break;
			}
		}
		if(flag)
			printf("1\n");
		else
			printf("0\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值