欧拉回路
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 12669 Accepted Submission(s): 4704
Problem Description
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
Sample Input
3 3 1 2 1 3 2 3 3 2 1 2 2 3 0
Sample Output
1 0
Author
ZJU
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define CLR(a,b) memset(a,b,siaeof(a))
int f[1010];
int num[1010];
int find(int x)
{
if(x!=f[x])
f[x]=find(f[x]);
return f[x];
}
void join(int x,int y)
{
int fx,fy;
fx=find(x);
fy=find(y);
if(fx!=fy)
f[fx]=fy;
}
int main()
{
int n,m,root;
while(~scanf("%d",&n)&&n)
{
scanf("%d",&m);
for(int i=1;i<=n;i++)
{
f[i]=i;
num[i]=0;
}
int a,b;
for(int i=1;i<=m;i++)
{
scanf("%d %d",&a,&b);
join(a,b);
num[a]++;
num[b]++;
}
int flag=1;
root=0;
for(int i=1;i<=n;i++)
{
if(f[i]==i)
root++;
if(root>1||num[i]&1) //根>1,说明有分开的;度数为奇数不是欧拉回路
{
flag=0;
break;
}
}
if(flag)
printf("1\n");
else
printf("0\n");
}
return 0;
}