【HDU】-find the safest road(最短路)(dijkstra)

find the safest road

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 11541    Accepted Submission(s): 4066


Problem Description
XX星球有很多城市,每个城市之间有一条或多条飞行通道,但是并不是所有的路都是很安全的,每一条路有一个安全系数s,s是在 0 和 1 间的实数(包括0,1),一条从u 到 v 的通道P 的安全度为Safe(P) = s(e1)*s(e2)…*s(ek) e1,e2,ek是P 上的边 ,现在8600 想出去旅游,面对这这么多的路,他想找一条最安全的路。但是8600 的数学不好,想请你帮忙 ^_^
 

Input
输入包括多个测试实例,每个实例包括:
第一行:n。n表示城市的个数n<=1000;
接着是一个n*n的矩阵表示两个城市之间的安全系数,(0可以理解为那两个城市之间没有直接的通道)
接着是Q个8600要旅游的路线,每行有两个数字,表示8600所在的城市和要去的城市
 

Output
如果86无法达到他的目的地,输出"What a pity!",
其他的输出这两个城市之间的最安全道路的安全系数,保留三位小数。
 

Sample Input
  
  
3 1 0.5 0.5 0.5 1 0.4 0.5 0.4 1 3 1 2 2 3 1 3
 

Sample Output
  
  
0.500 0.400 0.500

题解:这一题只要是理解了最短路的思想,仔细就可以做出来了。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define CLR(a,b)  memset(a,b,sizeof(a))
#define MAX 0x3f3f3f3
double dp[1010][1010];
bool vis[1010];
double dis[1010];
int n;
int st,ed;
void init()
{
	for(int i=1;i<=n;i++)
	{
		vis[i]=false;
		dis[i]=0;				 //不可到达是 0,开始全部初始化为 0 
		for(int j=1;j<=n;j++)
			dp[i][j]=dp[j][i]=0;  //不可到达,两点安全度也为0 
	}
}
void dijkstra()
{
	dis[st]=1;					//起点到自己是 1 
	while(1)
	{
		int v=-1;
		for(int i=1;i<=n;i++)
		{
			if(!vis[i]&&(v==-1||dis[i]>dis[v]))
				v=i;
		}
		if(v==-1)
			break;
		vis[v]=true;
		for(int i=1;i<=n;i++)
		{
			if(dis[i]<dis[v]*dp[v][i])		//这里是乘积关系 
				dis[i]=dis[v]*dp[v][i];	 
		} 
	}
}
int main()
{
	while(~scanf("%d",&n))
	{
		double t;	
		init();
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				if(j>=i)			//减少时间 
				{
					scanf("%lf",&t);
					dp[i][j]=dp[j][i]=t;
				}
				else
					scanf("%lf",&t);
			}
		}
		int m;
		scanf("%d",&m);
		while(m--)
		{
			for(int i=1;i<=n;i++)
			{
				vis[i]=false;
				dis[i]=0; 
			} 								//计算一次都要初始化一次 
			scanf("%d %d",&st,&ed);
			dijkstra();
			if(dis[ed]==0)
				printf("What a pity!\n");
			else
				printf("%.3lf\n",dis[ed]); 
		} 
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值