圆桌会议
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4713 Accepted Submission(s): 3308
Problem Description
HDU ACM集训队的队员在暑假集训时经常要讨论自己在做题中遇到的问题.每当面临自己解决不了的问题时,他们就会围坐在一张圆形的桌子旁进行交流,经过大家的讨论后一般没有解决不了的问题,这也只有HDU ACM集训队特有的圆桌会议,有一天你也可以进来体会一下哦:),在一天在讨论的时候,Eddy想出了一个极为古怪的想法,如果他们在每一分钟内,一对相邻的两个ACM队员交换一下位子,那么要多少时间才能得到与原始状态相反的座位顺序呢?(即对于每个队员,原先在他左面的队员后来在他右面,原先在他右面的队员在他左面),这当然难不倒其他的聪明的其他队友们,马上就把这个古怪的问题给解决了,你知道是怎么解决的吗?
Input
对于给定数目N(1<=N<=32767),表示有N个人,求要多少时间才能得到与原始状态相反的座位顺序(reverse)即对于每个人,原先在他左面的人后来在他右面,原先在他右面的人在他左面。
Output
对每个数据输出一行,表示需要的时间(以分钟为单位)
Sample Input
4 5 6
Sample Output
2 4 6
题解:让所有人的顺序与原来相反那么就是让这个环逆序。
像一条直线上的数,让他们完全逆序就像冒泡一样进行,需要次数就是n*(n-1)/2;
现在这里是个环,逆序我们把环看成两段,使每一段逆序次数相加就好了。
把环尽可能的等分成两段(为什么?设给分成两段,一段是a,则另一端n-a。需要次数y=a*(a-1)/2+(n-a)*(n-a-a)/2;可以求最小值,就是在a=n/2时)
#include<stdio.h>
int main()
{
int n,a;
while(~scanf("%d",&n))
{
a=n/2;
n=n-a;
printf("%d\n",a*(a-1)/2+n*(n-1)/2);
}
}