稳定性测试怎么做

本文介绍了稳定性测试的三个阶段:恒定压力、基于产品压力模型和异常干扰,并分享了实施效果,强调了在不同阶段中如何模拟真实业务场景和异常情况,以提升系统的稳定性和可靠性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

稳定性对产品的重要性不言而喻。

而作为质量保障,在稳定性测试方面的探索也在不断演化。记得两年前我们做稳定性测试还是基于恒定的压力,7*24小时长时间运行,关注的指标无非是吞吐量TPS的抖动、响应时间的变化趋势,以及各种资源是否泄露。稳定性测试的场景设计简单,和线上实际运行有较大的出入。带来的直接结果是稳定性测试发现的问题比较有限,做完之后仍然没有特别大的信心。

图片

那稳定性测试究竟该如何做?别人在怎么做?性能测试组今年在这方面做了一些思考和改进,虽然称不上很好的解决方案,但是通过努力比以前的做法还是有不少增强。

01

稳定性测试的三个阶段

第一个阶段:恒定压力阶段

目标是为了检验在恒定的大压力下,系统的服务是否稳定,比如是否存在吞吐量TPS指标的波动,响应延迟的抖动、毛刺等。波动情况必须在恒定的压力下进行验证,如果是波动的压力,出现吞吐量波动或者响应延迟的长尾现象会难以捕捉分析,难以区分是业务的问题还是服务的问题,为性能问题定位带来较大难度。

第二个阶段:基于一定的产品压力模型的,已上线产品

我们不难观察产品线上的典型业务及业务比例,那么在过去的七天或者一个月的时间内,产品每天的业务模型是什么样的?根据线上监控及统计不难得出。这个阶段就是为了模拟线上的这种业务模型下,也即是存在峰谷变化的压力、典型的一些Web产品每天的压力模型是比较固定的,比如每天早上9点,下午4点,晚上10点都会存在压力峰值。这种方式的模拟会为系统的稳定性带来一定的压力,如用户量突增等情况,会不会导致错误或宕机等。

第三个阶段:是在恒定压力下,引入异常干扰,注入异常用例

如CP

### 使用 Android Studio 进行稳定性测试 #### Monkey 测试工具集成于 Android Studio 中的应用 Android SDK 自带的自动化测试工具——Monkey 可用于评估应用的稳定性和可靠性。通过向目标程序发送随机模拟键盘事件流并自定义这些事件的数量来检测应用程序的表现情况[^1]。 对于希望利用 Android Studio 来执行此类测试的情况,可以通过命令行界面启动 ADB (Android Debug Bridge),进而调用 `adb shell monkey` 命令完成操作: ```bash $ adb shell monkey [options] ``` 为了更高效地管理和监控测试过程,在 Android Studio 内部集成了 Logcat 和其他调试功能,允许开发者实时查看日志输出以及异常堆栈跟踪信息。这有助于快速定位潜在问题所在之处。 除了基本的命令行方式外,还可以考虑采用 Espresso 或 UI Automator 等框架编写更加结构化的测试脚本,从而实现针对特定场景下的压力测试和回归测试。这类高级方法能够提供更好的控制力与可读性,并且支持与其他 CI/CD 工具链无缝对接。 #### 配置与执行步骤概述 当准备就绪后,可以在终端窗口输入如下所示的基础命令来进行简单的猴子测试(假设已连接设备或启动仿真器): ```bash $ adb devices # 列出所有在线设备 $ adb -s <device_serial> shell monkey -p com.example.appname --throttle 300 -v 500 ``` 上述指令会以每秒不超过三次的速度(-throttle参数) 向指定包名(com.example.appname) 的应用程序发送总共五百次伪随机用户交互动作(-v 参数表示详细程度)。 #### 提升效率的小贴士 - **Logcat 输出过滤**: 设置合适的标签筛选条件以便专注于感兴趣的错误报告; - **Gradle Task 定义**: 将常用的 ADB 调试命令封装成 Gradle tasks 方便重复使用; - **持续集成服务配置**: 结合 Jenkins/GitLab CI 等平台自动触发每次构建后的冒烟测试环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值