【论文阅读】 Aspect Based Sentiment Analysis with Gated Convolutional Networks

本文介绍一种基于门控卷积网络的细粒度情感分析模型,针对ACSA和ATSA任务,通过引入aspect embedding简化模型并加速训练。实验在SemEval2014数据集上取得良好效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Aspect Based Sentiment Analysis with Gated Convolutional Networks

Abstract

把细粒度情感分析分为两种,ACSA(给定一系列aspect,判断句子对aspect的情感极性)和ATSA(对句子中出现的taget,判断句子对target的情感极性)。之前的方法大多数使用LSTM和attention,模型复杂训练时间长。文章提出一个基于CNN和门机制的模型,模型更加简单,而且能并行运行。

Gated Convolutional Network with Aspect Embedding

每个卷积过滤器会以不同粒度从embedding vector中提取n-gram特征。普通CNN的提取过程是这样的

对每个过滤器,最大池化层取出最大值的特征,最终得到固定大小的vector,大小等于filter数。
在这里插入图片描述
可以看到模型架构如图,两个CNN,对应两个门,其中一个额外接受aspect embedding的信息,最后过最大池化后果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值