描述
给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
例如, 给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
分析
一开始的想法是,从i=0开始查第一个数,从j=i+1开始遍历第二个数,然后在j+1到最后中查找是否存在-(nums[i] + nums[j])(python的话可以简单的用In)存在的话就添加到数组中
不管时间是否符合,但是这里没办法做到去掉重复
后来看了网上有的分析,仍是从i=0开始查第一个数,但是查到倒数第三个数就可以了;
为了去掉重复,先对数组进行排序,从小到大,这样,当第一个数已经是正数时就没有必要再到后面去查剩下的两个数了;
确立了第一个数后,在i+1到length-1之间查找两个数,让它们的和为第一个数的相反数就可以了
这里因为数组是有序的,所以这第二个数和第三个数分别一个从f=i+1向后查,一个从l=length-1从后往前查,直到两个指针指向同一个数。while循环查找,如果left = nums[f] + nums[l]就等于第一个数的相反数(target),那添加到答案数组中,并且f+1 l-1;
如果left < target,根据数组的有序性,只需要f+1;同样,若left>target,只需要大的那个数变小,也就是l-1
由于在循环里,这样即使有多种组合符合条件,也都可以加进去
控制重复是个很重要的点
具体的用last值记录上一个第一个数
用lastf记录在while循环中上一个f指向的数,如果相同就跳过
最后得到的答案就是全面且不重复的了
代码
def threeSum( nums):
"""
:type nums: List[int]
:rtype: List[List[int]]
"""
if len(nums) < 3:
return []
nums = sorted(nums)
List = []
length = len(nums)
last = nums[0]
for i in range(0,length-2):
# 这里判断本次的第一个数是否和上一次的一样,一样则跳过
if i>=1:
if nums[i] == last:
continue
target = -nums[i]
# 有序数组,第一个数已经是正数,可以break了
if target <0:
break
last = nums[i]
f = i+1
lastf = nums[f]
l = length -1
while f<l:
left = nums[f] + nums[l]
if left == target:
List.append([nums[i],nums[f],nums[l]])
f += 1
# 注意这里的index限制
while f<length-1 and lastf == nums[f]:
f += 1
l -= 1
elif left < target:
f += 1
while f<length-1 and lastf == nums[f]:
f += 1
else:
l -= 1
# 注意这里的lastf值的更新,在里层while里每次都要更新的
lastf = nums[f]
return List